
David C. Wyld et al. (Eds): CCSEA, AIFU, EMSA, NLCAI, NCOM, SIPRO, SEA, DKMP, BDML, BIoT, CLOUD - 2023

pp. 51-60, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130506

AN NATURAL LANGUAGE PROCESSED WEB

APPLICATION THAT INTERPRET AND

CONVERT ENGLISH TO PYTHON CODE

Sunny Zhao1, Ang Li2

1St. Margaret Episcopal School, 31641 La Novia Ave,

San Juan Capistrano, CA 92675
2Computer Science Department, California State Polytechnic University,

Pomona, CA 91768

ABSTRACT

As the exchange between natural language and program code gradually becomes the need of

industry, more and more interpreters and translators are required. Such natural language
interpreters and converters can benefit society in a variety of fields, such as service industry,

communication industry, and engineering industry [6]. Concise and accurate language

processors will greatly boost the productivity of bottom repetitive works, provide examples and

inspirations for students and industry workers, and become the tendency of the future. This

paper introduces an application using natural language processing and neural network to

effectively interpret and translate English to Python code, and detailly present the structural

flow of the application [7]. This paper will also introduce the structure of the neural network,

its validity, and how the python torch was applied and integrated. Furthermore, it will

demonstrate the application and limitation of this model as well as its future improvements. We

applied our application to educational needs and conducted qualitative evaluation of the

approach. The result shows a beneficial and potential effect that is applicable to a greater field.

KEYWORDS

Natural language Processing , English to Python , Web Application

1. INTRODUCTION

As computers and the internet boomed and flourished in our modern world, humans greatly

benefited from its conveniences. While more people start to learn programming and choose to

enter the industry of Computer Science, it is easy to get lost in the enormous informational

internet. Students may find confusion and even being falsely directed either by the search engine
or the clickbaited websites [1]. Such troubles may waste students’ time and effort, and even cost

students’ interest in the subject of Computer Science [8]. Hence, this subject is created to solve

this problem: to save students’ time and effort by providing a quick access to programming and
algorithmic coding examples. Though the implication of the project is for the students and those

who are interested in the field of programming, it can also be used by industry workers to refresh

their memory and help on some repetitive jobs, such as handling file strings. Industry workers
often forget the exact details of an algorithm but remember its general structure as they haven’t

used them for years. However searching online would be an inefficient method because they

merely need the details of the code, not even to mention the inconsistency of the qualities of these

websites. An application that can quickly provide access to it will perfectly suffice their needs.
Considering the needs of the public and industry in present and future, the conversion between

http://airccse.org/cscp.html
http://airccse.org/csit/V13N05.html
https://doi.org/10.5121/csit.2023.130506

52 Computer Science & Information Technology (CS & IT)

natural language and code has a huge market and potential. Not only will it instantly improve the
efficiency of learning, but it will also become crucial to the future Artificial Development (AI)

[9]. The interaction between human and AI will require the ability to convert between natural

language and code of AI.

An existing related tool that has been proposed is ChatGPT [10]. ChatGPT is an artificial

intelligence chatbot that provides a conversational interface that allows users to input natural

language and output answers. Unlike traditional chatbots, ChatGPT records user’s earlier requests
for the follow-up questions, rejecting inappropriate requests, and challenging incorrect responses.

Because ChatGPT was trained in a diverse range of text data including books, articles, and online

conversations, it has shown a remarkable level of accuracy, sensitivity, and sophistication[2].
Though ChatGPT has wider applicability and stronger performance, its issues are blatant. The

first problem is its potential disruption of academic honesty and education in general. As the

COVID-19 shifts our world online, a rising trend of online education has emerged. Among

educators, it is believed that academic misconduct is on the rise and the online assessment is
particularly conductive of cheating. OpenGPT, in this case, is capable of doing such work [11].

Its sophistication in dialogue and on a variety of topics as well as its ability of generating

compelling and accurate answers to difficult questions are extremely prone to being exploited and
misused. However, our application will not cause such problems since it only provides users

examples of code. Our application strives for educational purposes while maintaining and

protecting the academic sphere. Although OpenGPT is likely to exacerbate academic dishonesty,
its characteristic of close source is also a potential problem. Since it is closed source, users’ data

may be illegally recorded and used. However, our application will not cause such a problem since

it's open source. Though OpenGPT demonstrated unprecedented sophistication, it is built on the

expense of an enormous amount of dataset and scientists’ efforts, and it is likely inexplicable.
However, our application uses a simple and relatively effective approach that is highly replicable.

We proposed and built a simple, replicable but effective neural network model on interpreting

natural language and converting natural language to code, the English to Python converter, or
ETP. Our goal is inspired by the OpenAI projects which includes ChatGPT and InstructGPT. Our

application integrates backend programs and frontend websites to provide a smooth and

consistent experience to the users. There are some good features of our application. First, the

dataset we used to train the neural network is highly reliable because of its coverage on a wide
range of coding examples. The training dataset consisted of approximately 5,000 classic

examples that covered the majority of the common problems. This dataset is what enables our

neural network model to maintain high accuracy and flexibility. The second feature is the neural
network model we used.

To prove the capability and test the accuracy of our model, we conducted an experiment
consisting of various input prompts and compared them to the standard answers. The comparison

test proceeded as follows: after we get the output code from our model, we will give the same

input to both our program and the program of the standard program. Then, we compared the

output from our program and that of standard program’s. Note that before that we fixed and
ignored the potential error from the format and index. The reason is that the format and

inconsistency do not interrupt the comprehension of the users regarding the coding examples.

We collected the experiment data and analyzed its accuracy and structures based on these 25
input prompts. The comparison was focused on the similarity of code structure between the

programs generated from our model and those of standard answers and the outputs. Afterward,

we randomly generated 50 prompts that are common among beginner programmers and input
them into our model to test its accuracy. Lastly, we published our model and selected a number of

users to test the applicability of our model. By doing the steps above, we were able to obtain both

the general accuracy and applicability of our model. The following steps were repeated with the

Computer Science & Information Technology (CS & IT) 53

ChatGPT as a comparison group such that we can know the efficiency ratio between ChatGPT
and our model.

The rest of the paper is organized as follows: Section 2 gives the details of the challenges that we

met during the experiment and designing the samples. We will talk about why we encounter these
problems and how we solved them. Section 3 focuses on the details of our solutions

corresponding to the challenges that we mentioned in Section 2. We will also demonstrate the

structural flow of our application through the use of visual diagrams and specific discussion.
Section 4 presents the relevant details about the experiment we did, following by presenting the

related work in Section 5. Finally, Section 6 gives the conclusion remarks, as well as pointing out

the future work of this project.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. Handling Training Data

The first challenge we encountered was to handle the training data in the csv file we obtained. In
order to decide what ways to handle the dataset, we have to first decide in what ways the data is

going to be fed into the model. At first, we thought of a hashmap to store and use the data [12].

However, using hashmap is an inefficient and incomplete way to handle the dataset and achieve
what we expect: to filter the strings while preparing for the natural language processing. Then we

proposed another way to handle and filter the strings: using the tokenizer library in Python. The

tokenizer library provides string tokenization that is easy to implement, store, and reuse. Through
using the tokenizer library, we are able to purify the data, differentiate between keywords, and

make the following process easier.

2.2. Designing Structures and Choose Tools

The second challenge we encounter is to design the structures and layers of our model. In order to
implement our thoughts, we have to carefully choose in what ways and what tools we are going

to implement. Luckily Python provides a variety of libraries that are easy to access and

understand. After careful consideration, we choose PyTorch, an optimized tensor library for deep

learning using GPUs and CPUs, as our main library. PyTorch provides us operations and prebuild
models that are highly useful, such as CUDA operations and Normalization Layers [13]. Initially,

we struggle on deciding the amount of layers the neural network would have, because we neither

want the layers to consume excessive computing resources nor the layers lack accuracy. However,
we eventually came to the conclusion that there our model should contain 3 layers: Encoder

Layer, Decoder Layer, and Multihead-Attention Layer. We also decided using supervised

learning as our training model, simply it’s the most suitable in our case.

3. SOLUTION

English To Python Converter (ETP) is a web application that uses neural network and natural

language processing to interpret and translate English to Python code. The purpose of ETP is to
provide a platform where students and industry workers can easily access and learn. It is strived

to solve the problem of inconsistent qualities of the resources of the internet and the time

consumption resulting from such attempts. ETP has two parts, the backend neural network and

the frontend website. The frontend website provides basic instructions and information on the
project, while the backend is the actual neural network model application. The backend of the

54 Computer Science & Information Technology (CS & IT)

project is built entirely based on Python. It utilizes Python libraries such as numpy, tokenizer, and
PyTorch. The construction of ETP contains many steps. The first step is data cleaning and natural

language processing on the training dataset that contains relevant high frequency data. After the

data is cleaned and the keywords removed, the tokenization takes place. Tokenization will

categorize and prepare the data to be fed into the neural network model. The neural network
model is composed of 3 layers: Encoder Layer (EL), Decoder Layer (DL), and Multihead-

Attention Layer (MAL). As its name suggests, the Encoder layer is composed of multiple

Encoder nodes and takes a tokenized string as input. The Encoder class is created using PyTorch,
same as MAL and DL. In the Multihead Layer, linear regression is used to model the relationship

between the scalar response and the explanatory variables. The output computed from MAL will

then be passed to the DL, where the untokenization will occur. In the DL, the output will also be
evaluated and backward propagated if necessary.

Figure 1. Overview of the solution

The first step before building our neural network is data cleaning and preparation. After we

obtain our training dataset file, we first read the data and store them into a dictionary. Then we

utilized the Python Tokenizer library to tokenize and mask the string while filtering out the
keywords (Figure 2). The dataset was split into two parts: 80% of them would be used to train the

model, and the rest would be used to test the model. After the dataset was prepared, the next step

was to construct the Encoder class and the Encoder Layer class. The Encoder class was
composed of its attributes and the forward function, and it includes the process of tokenizing

input strings. The Dropout method was used throughout the model for regularization and

preventing the co-adaptation of feature detectors. Note that the scale attributed used the sqrt

function and FloatTensor to process the input (Figure 3). The forward function then integrates the
variables and passes it to the Multihead Attention Layer. The MA nodes processed all the input

again with the sqrt function in a multidimensional matrix and passed the output into the decoder

nodes. We decided to use linear regression in the MAL to adjust the weights of the MA nodes,
simply because the feature that linear regression would minimize the discrepancy of predicted

and actual output numbers was the most suitable in this case. The purpose of the decoder layer is

to compute the final input from the hidden layer and unmask the output into the corresponding

strings according to the natural language processing. The Decoder class had a similar structure
compared with the Encoder class, which used the Embedding function and FloatTensor model.

Computer Science & Information Technology (CS & IT) 55

Figure 2. String Filtering and Tokenization

Figure 3. Forward function of Encoder class

Figure 4. Attributes of Encoder class

The frontend web application is rather simple. We created a website integrated with Javascript
which acted as an agent to transfer the user input into the model. We used Python Flask as our

server. Since we have already created the interface function of the model, we can just connect it

to the website.

4. EXPERIMENT

4.1. Experiment 1

Our trained model is able to receive the input and compute the output through its neural network.

It does so through the Sequence to Seqence neural network model. We create a eng_to_python

that accepts string input parameter. The rest of the experiment would be using eng_to_python
function as a interface. The first experiment that we proposed is a small dataset only contains 25

56 Computer Science & Information Technology (CS & IT)

experiment data. These 25 data had been standardized and they were designed specifically for
the model. These 25 testing data all start with the command of “Write a program/function that..”

or “a program/ function that…”. Because of our model is train using such similar structured data,

other structured commands might not be interpreted thoroughly by the model. The purpose of the

first experiment is merely to test if the model is performing as expected under the predetermined
constraints. The process of the evaluation proceeds as followed:

1. ETP model receive the input
2. Output generated from ETP model being collected

3. Output program and Control program take in the same input

4. Comparing results and collecting data

Figure 5. Result composition

Figure 6. Table of experiment 1

The experiment data collected demonstrates a positive and optimistic result. According to the
Result Composition, the wrong answer and runtime error each occupy 4.0% of the 25 data test,

and the accurate answer occupies 92.0% of the 25 data test. Despite the result being certainly

exhilarating and affirmative to our effort, there are multiple limitations and concerns in this

experiment. The first problem and limitation is the bias of the dataset. Due to the limited size of
the dataset, the result collected from this experiment is certainly not representative of all. In order

to truly test out the capability and margin of error of the ETP model, more and more distinct

structured data is inevitable. Besides the limited data size, the ways these data are formatted can
also cause bias and deviation. According to the experiment process that we designed, all of the

inputs are formatted in a specific way that was used in the ETP model. However, the effect of

more generalized input on the output remains unknown.

4.2. Experiment 2

In order to test out the true capability and effectiveness of the ETP model, we proposed a more

random and authentic experiment. We found 10 subjects and let each enter 5 commands into the

ETP model. The occupation of the experiment subject ranging from Software Engineers to

Teachers and to students, and each of them have backgrounds on programming in some extent.

Computer Science & Information Technology (CS & IT) 57

Their proposed commands were classified and rank by the participants themselves based on 3
difficulties, easy, medium or hard. At the end of the experiment, we required testing subjects each

to rate their satisfaction level to the ETP model out of 3, with 3 being “this is exactly what I

want”, 2 being “this somewhat helpful”, and 1 being “this is of no use”. The overall experimental

data was collected and presented below.

Figure 7. types of commands

Figure 8. Satisfaction Score Distribution of the users

Figure 9. Result Composition

The result is from the second experiment is somewhat expected to us. ETP shows a high level

successful convert rate on the easy and medium commands. Owing to the fact that Data Structure
can be implemented through in-build functions, they are the most capable question type for ETP.

At the same time, data structure may be a challenging part for programming beginners because

their lack of experience. In this sense, ETP has fulfill its job to provide a easy-to-access platform
for students. According to the data in figure 8, the people who rated a score of 3 occupied the

largest percentage, which indicate that ETP has relative usefulness and value. However, that fact

58 Computer Science & Information Technology (CS & IT)

that 20% of participant gave a score of 1 suggest that there are still many insufficiency in the
model. Problems such as inability to accurately process hard or abstract questions are still need to

be considered in the future.

5. RELATED WORK

This study illustrates the definition and new methodology of Natural Language Understanding. It

explores the steps and components of a Natural Language Model, which includes syntactic and

semantic aspects [3]. We borrow inspiration from this work into our work. Especially its
redefinition of the fundamental goals of Natural Language Understanding, which individual

strings should not be interpreted exactly. Compared to our work, the work by Bates merely

proposed a general model of Natural Language Understanding. The generic NL system he

proposed, however, did influence our model since we borrowed the concept of Parser, Semantic
Processor, and Reasoner. Though the work done by Bates had great influence on those who were

involved in the industry, he did not dive into the technical details. In comparison, we propose an

actual and sophisticated model with technical details which can be employed in the market.

The work by Carter and Rayner focused on the translation between spoken languages, such as

spoken English to spoken Swedish [4]. The paper focused on the integration of speech translator
and language translator. Our work has some similarities with the work by Carter and Rayner.

Both contain recognition of finitestate grammar. This finite-state model has its advantages of

being fast, robust, and easy to train. Though it is insufficiently expressive to capture many

important types of linguistic regularities, we compensate for that through some natural language
processing optimizations. What’s different between our research and theirs is that they apply a

conventional pipeline N-best interface, which integrates their translator and understanding. Carter

and Rayner’s work demonstrates values primarily on communications. This robust and new
recognition model will most likely solve problems of trans-cultural communication. However, the

value of our work is shown in greater areas, such as education and engineering.

This study used natural language processing in analyzing contend of COVID-19. A model

improved on the base of the BERT model was proposed, which followed the principle of

bidirectional transformer models on unlabeled text corpuses[5]. Our work has many aspects that

are similar to their work. For instance, we both used the traditional methods of mask language
modeling and sentence order prediction. However, their model was trained in a unsupervised

manner while we chose supervised training. Besidesa, the variations on the ways of modeling and

training, the Covid-Twitter-Bert model was able to detect sentiments and provide interesting
perspectives and data to the pandemic. The model used Stanford Sentiment Treebank (SST-2) as

its sentiment corpuses, which effectively provided sentiment differentiation by classified

keywords as positive and negative.

6. CONCLUSIONS

To give a general overview of our study, we summarized all of the above sections and

reexplained them here. Essentially, we proposed an application called The English to Python
Converter, or ETP, to solve the problem of lacking an integrated and consistent tool that provides

qualitative code examples. We separate our application into frontend website and backend natural

language processing and neural network model. We used Python library Pytorch for modeling the

neural network system, and Python library Tokenizer for modeling the natural language
processing. We first filtered and parsed the data using Python Numpy and Python Pandas. Then,

we masked and tokenized the strings for natural language processing. In regard to the layout of

the neural network model, we proposed a three-layer structure：encoder layer, multihead-

Computer Science & Information Technology (CS & IT) 59

attention layer, and the decoder layer. The whole model can be regarded as a conventional
Sequence to Sequence integrated with optimizations techniques such as counting entropy lost and

dropout. We applied our application to 2 experiments and concluded with the claim that ETP has

its effectiveness. In the first experiment, we created 25 experiment samples each with answers

and classified by type and input them into our model to test its effectiveness. The result of the
first experiment demonstrated that ETP has a high accuracy rate on easy commands. In the

second experiment, we invited 10 participants to each propose 5 commands to ETP and rate their

satisfaction. The result collected showed that though ETP hasn't demonstrated sophistication on
high level or abstract commands, it is fully capable of intermediate and low level commands or

even some high level commands specified with special words. In addition, participants have

shown relatively positive comments on ETP, which is a positive sign to our goal for publication
and that of helping more people.

Some limitations of ETP are relatively obvious. First of all, the lack of a more comprehensive

dataset limited its ability to produce problems that are out of range. In other words, ETP
maintains high accuracy only on those commands that are similar or identical in its dataset. The

second limitation may be the natural language processing component. There still exists a lot of

space for optimization and improvement. Some optimization or even reconstruction, such as
Bayesian Network and Hidden Markov Model, can be applied to our model [14][15]. The

problem witha basic natural language processing component is the inability to comprehend

complex commands. Commands that are out of the vocabulary range of ETP, such as “provide,
write me”, are of none zone to ETP.

The limitations mentioned above can be solved through various means. The limitation of lacking

a comprehensive dataset, for instance, can be solved by acquiring such a dataset and feeding it
into the model. One approach to do it is to collect open data from the internet. Since there are

various platforms that provide coding examples, a web scraper program can easily access such

resources. Another approach to solve this is through the voluntary feedback of the users. Users
can evaluate the result they got and give ETP feedback that can improve the model, such as the

example program that should be generated. Such an approach will surely need some

modifications. In regard to the second limitation, such optimizations are fairly simple to

implement and thus should not be a big issue.

REFERENCES

[1] Zeng, Eric, Tadayoshi Kohno, and Franziska Roesner. "Bad news: Clickbait and deceptive ads on

news and misinformation websites." Workshop on Technology and Consumer Protection. 2020.

[2] Lehmann, Donald R., Leigh McAlister, and Richard Staelin. "Sophistication in research in

marketing." Journal of Marketing 75.4 (2011): 155-165.

[3] Dong, Li, et al. "Unified language model pre-training for natural language understanding and

generation." Advances in neural information processing systems 32 (2019).

[4] Jiang, Zifan, et al. "Machine Translation between Spoken Languages and Signed Languages

Represented in SignWriting." arXiv preprint arXiv:2210.05404 (2022).

[5] Clifton, Chris, Robert Cooley, and Jason Rennie. "Topcat: Data mining for topic identification in a

text corpus." IEEE transactions on knowledge and data engineering 16.8 (2004): 949-964.
[6] Frost, Richard, and John Launchbury. "Constructing natural language interpreters in a lazy functional

language." The Computer Journal 32.2 (1989): 108-121.

[7] Clement, Colin B., et al. "PyMT5: multi-mode translation of natural language and Python code with

transformers." arXiv preprint arXiv:2010.03150 (2020).

[8] Weiser, Mark. "Some computer science issues in ubiquitous computing." Communications of the

ACM 36.7 (1993): 75-84.

[9] Paul, Debleena, et al. "Artificial intelligence in drug discovery and development." Drug discovery

today 26.1 (2021): 80.

60 Computer Science & Information Technology (CS & IT)

[10] Aydın, Ömer, and Enis Karaarslan. "OpenAI ChatGPT generated literature review: Digital twin in

healthcare." Available at SSRN 4308687 (2022).

[11] Jiao, Wenxiang, et al. "Is ChatGPT a good translator? A preliminary study." arXiv preprint

arXiv:2301.08745 (2023).

[12] Schwalb, David, et al. "NVC-hashmap: A persistent and concurrent hashmap for non-volatile
memories." Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and Analytics.

2015.

[13] Bakkum, Peter, and Kevin Skadron. "Accelerating SQL database operations on a GPU with CUDA."

Proceedings of the 3rd workshop on general-purpose computation on graphics processing units. 2010.

[14] Rabiner, Lawrence, and Biinghwang Juang. "An introduction to hidden Markov models." ieee assp

magazine 3.1 (1986): 4-16.

[15] Marcot, Bruce G., and Trent D. Penman. "Advances in Bayesian network modelling: Integration of

modelling technologies." Environmental modelling & software 111 (2019): 386-393.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Abstract
	As the exchange between natural language and program code gradually becomes the need of industry, more and more interpreters and translators are required. Such natural language interpreters and converters can benefit society in a variety of fields, su...
	Keywords

