
David C. Wyld et al. (Eds): CCSEA, AIFU, EMSA, NLCAI, NCOM, SIPRO, SEA, DKMP, BDML, BIoT, CLOUD - 2023  

pp. 51-60, 2023. CS & IT - CSCP 2023                                                                                        DOI: 10.5121/csit.2023.130506 

 
AN NATURAL LANGUAGE PROCESSED WEB 

APPLICATION THAT INTERPRET AND 

CONVERT ENGLISH TO PYTHON CODE 
 

Sunny Zhao1, Ang Li2 

 
1St. Margaret Episcopal School, 31641 La Novia Ave,  

San Juan Capistrano, CA 92675 
2Computer Science Department, California State Polytechnic University,  

Pomona, CA 91768 
 

ABSTRACT 
 
As the exchange between natural language and program code gradually becomes the need of 

industry, more and more interpreters and translators are required. Such natural language 
interpreters and converters can benefit society in a variety of fields, such as service industry, 

communication industry, and engineering industry [6]. Concise and accurate language 

processors will greatly boost the productivity of bottom repetitive works, provide examples and 

inspirations for students and industry workers, and become the tendency of the future. This 

paper introduces an application using natural language processing and neural network to 

effectively interpret and translate English to Python code, and detailly present the structural 

flow of the application [7]. This paper will also introduce the structure of the neural network, 

its validity, and how the python torch was applied and integrated. Furthermore, it will 

demonstrate the application and limitation of this model as well as its future improvements. We 

applied our application to educational needs and conducted qualitative evaluation of the 

approach. The result shows a beneficial and potential effect that is applicable to a greater field.  
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1. INTRODUCTION 
 
As computers and the internet boomed and flourished in our modern world, humans greatly 

benefited from its conveniences. While more people start to learn programming and choose to 

enter the industry of Computer Science, it is easy to get lost in the enormous informational 

internet. Students may find confusion and even being falsely directed either by the search engine 
or the clickbaited websites [1]. Such troubles may waste students’ time and effort, and even cost 

students’ interest in the subject of Computer Science [8]. Hence, this subject is created to solve 

this problem: to save students’ time and effort by providing a quick access to programming and 
algorithmic coding examples. Though the implication of the project is for the students and those 

who are interested in the field of programming, it can also be used by industry workers to refresh 

their memory and help on some repetitive jobs, such as handling file strings. Industry workers 
often forget the exact details of an algorithm but remember its general structure as they haven’t 

used them for years. However searching online would be an inefficient method because they 

merely need the details of the code, not even to mention the inconsistency of the qualities of these 

websites. An application that can quickly provide access to it will perfectly suffice their needs. 
Considering the needs of the public and industry in present and future, the conversion between 
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natural language and code has a huge market and potential. Not only will it instantly improve the 
efficiency of learning, but it will also become crucial to the future Artificial Development (AI) 

[9]. The interaction between human and AI will require the ability to convert between natural 

language and code of AI.  

 
An existing related tool that has been proposed is ChatGPT [10]. ChatGPT is an artificial 

intelligence chatbot that provides a conversational interface that allows users to input natural 

language and output answers. Unlike traditional chatbots, ChatGPT records user’s earlier requests 
for the follow-up questions, rejecting inappropriate requests, and challenging incorrect responses. 

Because ChatGPT was trained in a diverse range of text data including books, articles, and online 

conversations, it has shown a remarkable level of accuracy, sensitivity, and sophistication[2]. 
Though ChatGPT has wider applicability and stronger performance, its issues are blatant. The 

first problem is its potential disruption of academic honesty and education in general.  As the 

COVID-19 shifts our world online, a rising trend of online education has emerged. Among 

educators, it is believed that academic misconduct is on the rise and the online assessment is 
particularly conductive of cheating. OpenGPT, in this case, is capable of doing such work [11]. 

Its sophistication in dialogue and on a variety of topics as well as its ability of generating 

compelling and accurate answers to difficult questions are extremely prone to being exploited and 
misused. However, our application will not cause such problems since it only provides users 

examples of code. Our application strives for educational purposes while maintaining and 

protecting the academic sphere. Although OpenGPT is likely to exacerbate academic dishonesty, 
its characteristic of close source is also a potential problem. Since it is closed source, users’ data 

may be illegally recorded and used. However, our application will not cause such a problem since 

it's open source. Though OpenGPT demonstrated unprecedented sophistication, it is built on the 

expense of an enormous amount of dataset and scientists’ efforts, and it is likely inexplicable. 
However, our application uses a simple and relatively effective approach that is highly replicable. 

We proposed and built a simple, replicable but effective neural network model on interpreting 

natural language and converting natural language to code, the English to Python converter, or 
ETP. Our goal is inspired by the OpenAI projects which includes ChatGPT and InstructGPT. Our 

application integrates backend programs and frontend websites to provide a smooth and 

consistent experience to the users. There are some good features of our application. First, the 

dataset we used to train the neural network is highly reliable because of its coverage on a wide 
range of coding examples. The training dataset consisted of approximately 5,000 classic 

examples that covered the majority of the common problems. This dataset is what enables our 

neural network model to maintain high accuracy and flexibility. The second feature is the neural 
network model we used. 

 

To prove the capability and test the accuracy of our model, we conducted an experiment 
consisting of various input prompts and compared them to the standard answers. The comparison 

test proceeded as follows: after we get the output code from our model, we will give the same 

input to both our program and the program of the standard program. Then, we compared the 

output from our program and that of standard program’s. Note that before that we fixed and 
ignored the potential error from the format and index. The reason is that the format and 

inconsistency do not interrupt the comprehension of the users regarding the coding examples.  

We collected the experiment data and analyzed its accuracy and structures based on these 25 
input prompts. The comparison was focused on the similarity of code structure between the 

programs generated from our model and those of standard answers and the outputs.  Afterward, 

we randomly generated 50 prompts that are common among beginner programmers and input 
them into our model to test its accuracy. Lastly, we published our model and selected a number of 

users to test the applicability of our model. By doing the steps above, we were able to obtain both 

the general accuracy and applicability of our model. The following steps were repeated with the 
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ChatGPT as a comparison group such that we can know the efficiency ratio between ChatGPT 
and our model.  

 

The rest of the paper is organized as follows: Section 2 gives the details of the challenges that we 

met during the experiment and designing the samples. We will talk about why we encounter these 
problems and how we solved them. Section 3 focuses on the details of our solutions 

corresponding to the challenges that we mentioned in Section 2. We will also demonstrate the 

structural flow of our application through the use of visual diagrams and specific discussion. 
Section 4 presents the relevant details about the experiment we did, following by presenting the 

related work in Section 5. Finally, Section 6 gives the conclusion remarks, as well as pointing out 

the future work of this project. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. Handling Training Data 
 

The first challenge we encountered was to handle the training data in the csv file we obtained. In 
order to decide what ways to handle the dataset, we have to first decide in what ways the data is 

going to be fed into the model. At first, we thought of a hashmap to store and use the data [12]. 

However, using hashmap is an inefficient and incomplete way to handle the dataset and achieve 
what we expect: to filter the strings while preparing for the natural language processing. Then we 

proposed another way to handle and filter the strings: using the tokenizer library in Python. The 

tokenizer library provides string tokenization that is easy to implement, store, and reuse. Through 
using the tokenizer library, we are able to purify the data, differentiate between keywords, and 

make the following process easier. 

 

2.2. Designing Structures and Choose Tools  
 

The second challenge we encounter is to design the structures and layers of our model. In order to 
implement our thoughts, we have to carefully choose in what ways and what tools we are going 

to implement. Luckily Python provides a variety of libraries that are easy to access and 

understand. After careful consideration, we choose PyTorch, an optimized tensor library for deep 

learning using GPUs and CPUs, as our main library. PyTorch provides us operations and prebuild 
models that are highly useful, such as CUDA operations and Normalization Layers [13]. Initially, 

we struggle on deciding the amount of layers the neural network would have, because we neither 

want the layers to consume excessive computing resources nor the layers lack accuracy. However, 
we eventually came to the conclusion that there our model should contain 3 layers: Encoder 

Layer, Decoder Layer,  and Multihead-Attention Layer. We also decided using supervised 

learning as our training model, simply it’s the most suitable in our case. 

 

3. SOLUTION 
 

English To Python Converter (ETP) is a web application that uses neural network and natural 

language processing to interpret and translate English to Python code. The purpose of ETP is to 
provide a platform where students and industry workers can easily access and learn. It is strived 

to solve the problem of inconsistent qualities of the resources of the internet and the time 

consumption resulting from such attempts. ETP has two parts, the backend neural network and 

the frontend website. The frontend website provides basic instructions and information on the 
project, while the backend is the actual neural network model application. The backend of the 
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project is built entirely based on Python. It utilizes Python libraries such as numpy, tokenizer, and 
PyTorch. The construction of ETP contains many steps. The first step is data cleaning and natural 

language processing on the training dataset that contains relevant high frequency data. After the 

data is cleaned and the keywords removed, the tokenization takes place. Tokenization will 

categorize and prepare the data to be fed into the neural network model. The neural network 
model is composed of 3 layers: Encoder Layer (EL), Decoder Layer (DL), and Multihead-

Attention Layer (MAL). As its name suggests, the Encoder layer is composed of multiple 

Encoder nodes and takes a tokenized string as input. The Encoder class is created using PyTorch, 
same as MAL and DL. In the Multihead Layer, linear regression is used to model the relationship 

between the scalar response and the explanatory variables. The output computed from MAL will 

then be passed to the DL, where the untokenization will occur. In the DL, the output will also be 
evaluated and backward propagated if necessary.  

 

 
 

Figure 1. Overview of the solution 

 
The first step before building our neural network is data cleaning and preparation. After we 

obtain our training dataset file, we first read the data and store them into a dictionary. Then we 

utilized the Python Tokenizer library to tokenize and mask the string while filtering out the 
keywords (Figure 2). The dataset was split into two parts: 80% of them would be used to train the 

model, and the rest would be used to test the model. After the dataset was prepared, the next step 

was to construct the Encoder class and the Encoder Layer class. The Encoder class was 
composed of its attributes and the forward function, and it includes the process of tokenizing 

input strings. The Dropout method was used throughout the model for regularization and 

preventing the co-adaptation of feature detectors. Note that the scale attributed used the sqrt 

function and FloatTensor to process the input (Figure 3). The forward function then integrates the 
variables and passes it to the Multihead Attention Layer. The MA nodes processed all the input 

again with the sqrt function in a multidimensional matrix and passed the output into the decoder 

nodes. We decided to use linear regression in the MAL to adjust the weights of the MA nodes, 
simply because the feature that linear regression would minimize the discrepancy of predicted 

and actual output numbers was the most suitable in this case.  The purpose of the decoder layer is 

to compute the final input from the hidden layer and unmask the output into the corresponding 

strings according to the natural language processing. The Decoder class had a similar structure 
compared with the Encoder class, which used the Embedding function and FloatTensor model.  
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Figure 2. String Filtering and Tokenization 

 

 
 

Figure 3. Forward function of Encoder class 

 

 
 

Figure 4. Attributes of Encoder class 

 

The frontend web application is rather simple. We created a website integrated with Javascript 
which acted as an agent to transfer the user input into the model. We used Python Flask as our 

server. Since we have already created the interface function of the model, we can just connect it 

to the website. 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

Our trained model is able to receive the input and compute the output through its neural network. 

It does so through the Sequence to Seqence neural network model. We create a eng_to_python 

that accepts string input parameter. The rest of the experiment would be using eng_to_python 
function as a interface. The first experiment that we proposed is a small dataset only contains 25 
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experiment data.  These 25 data had been standardized and they were designed specifically for 
the model. These 25 testing data all start with the command of “Write a program/function that..” 

or “a program/ function that…”. Because of our model is train using such similar structured data, 

other structured commands might not be interpreted thoroughly by the model. The purpose of the 

first experiment is merely to test if the model is performing as expected under the predetermined 
constraints. The process of the evaluation proceeds as followed:  

 

1. ETP model receive the input 
2. Output generated from ETP model being collected  

3. Output program and Control program take in the same input  

4. Comparing results and collecting data 
 

 
 

Figure 5. Result composition 

 

 
 

Figure 6. Table of experiment 1 

 

The experiment data collected demonstrates a positive and optimistic result. According to the 
Result Composition, the wrong answer and runtime error each occupy 4.0% of the 25 data test, 

and the accurate answer occupies 92.0% of the 25 data test. Despite the result being certainly 

exhilarating and affirmative to our effort, there are multiple limitations and concerns in this 

experiment. The first problem and limitation is the bias of the dataset. Due to the limited size of 
the dataset, the result collected from this experiment is certainly not representative of all. In order 

to truly test out the capability and margin of error of the ETP model, more and more distinct 

structured data is inevitable. Besides the limited data size, the ways these data are formatted can 
also cause bias and deviation. According to the experiment process that we designed, all of the 

inputs are formatted in a specific way that was used in the ETP model. However, the effect of 

more generalized input on the output remains unknown. 

 

4.2. Experiment 2 
 
In order to test out the true capability and effectiveness of the ETP model, we proposed a more 

random and authentic experiment. We found 10 subjects and let each enter 5 commands into the 

ETP model. The occupation of the experiment subject ranging from Software Engineers to 

Teachers and to students, and each of them have backgrounds on programming in some extent. 
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Their proposed commands were classified and rank by the participants themselves based on 3 
difficulties, easy, medium or hard. At the end of the experiment, we required testing subjects each 

to rate their satisfaction level to the ETP model out of 3, with 3 being “this is exactly what I 

want”, 2 being “this somewhat helpful”, and 1 being “this is of no use”. The overall experimental 

data was collected and presented below. 
 

 
 

Figure 7. types of commands 

 

 
 

Figure 8. Satisfaction Score Distribution of the users 

 

 
 

Figure 9.  Result Composition 

 

The result is from the second experiment is somewhat expected to us. ETP shows a high level 

successful convert rate on the easy and medium commands. Owing to the fact that Data Structure 
can be implemented through in-build functions, they are the  most capable question type for ETP. 

At the same time, data structure may be a challenging part for programming beginners because 

their lack of experience. In this sense, ETP has fulfill its job to provide a easy-to-access platform 
for students. According to the data in figure 8, the people who rated a score of 3 occupied the 

largest percentage, which indicate that ETP has relative usefulness and value. However, that fact 
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that 20% of participant gave a score of 1 suggest that there are still many insufficiency in the 
model. Problems such as inability to accurately process hard or abstract questions are still need to 

be considered in the future. 

 

5. RELATED WORK 
 
This study illustrates the definition and new methodology of Natural Language Understanding. It 

explores the steps and components of a Natural Language Model, which includes syntactic and 

semantic aspects [3]. We borrow inspiration from this work into our work. Especially its 
redefinition of the fundamental goals of Natural Language Understanding, which individual 

strings should not be interpreted exactly. Compared to our work, the work by Bates merely 

proposed a general model of Natural Language Understanding. The generic NL system he 

proposed, however, did influence our model since we borrowed the concept of Parser, Semantic 
Processor, and Reasoner.  Though the work done by Bates had great influence on those who were 

involved in the industry, he did not dive into the technical details. In comparison, we propose an 

actual and sophisticated model with technical details which can be employed in the market.  
 

The work by Carter and Rayner focused on the translation between spoken languages, such as 

spoken English to spoken Swedish [4].  The paper focused on the integration of speech translator 
and language translator. Our work has some similarities with the work by Carter and Rayner. 

Both contain recognition of finitestate grammar. This finite-state model has its advantages of 

being fast, robust, and easy to train. Though it is insufficiently expressive to capture many 

important types of linguistic regularities, we compensate for that through some natural language 
processing optimizations. What’s different between our research and theirs is that they apply a 

conventional pipeline N-best interface, which integrates their translator and understanding. Carter 

and Rayner’s work demonstrates values primarily on communications. This robust and new 
recognition model will most likely solve problems of trans-cultural communication. However, the 

value of our work is shown in greater areas, such as education and engineering. 

 
This study used natural language processing in analyzing contend of COVID-19. A model 

improved on the base of the BERT model was proposed, which followed the principle of 

bidirectional transformer models on unlabeled text corpuses[5]. Our work has many aspects that 

are similar to their work. For instance, we both used the traditional methods of mask language 
modeling and sentence order prediction. However, their model was trained in a unsupervised 

manner while we chose supervised training. Besidesa, the variations on the ways of modeling and 

training, the Covid-Twitter-Bert model was able to detect sentiments and provide interesting 
perspectives and data to the pandemic. The model used Stanford Sentiment Treebank (SST-2) as 

its sentiment corpuses, which effectively provided sentiment differentiation by classified 

keywords as positive and negative.  

 

6. CONCLUSIONS 
 

To give a general overview of our study, we summarized all of the above sections and 

reexplained them here. Essentially, we proposed an application called The English to Python 
Converter, or ETP, to solve the problem of lacking an integrated and consistent tool that provides 

qualitative code examples. We separate our application into frontend website and backend natural 

language processing and neural network model. We used Python library Pytorch for modeling the 

neural network system, and Python library Tokenizer for modeling the natural language 
processing. We first filtered and parsed the data using Python Numpy and Python Pandas. Then, 

we masked and tokenized the strings for natural language processing. In regard to the layout of 

the neural network model, we proposed a three-layer structure：encoder layer, multihead-
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attention layer, and the decoder layer. The whole model can be regarded as a conventional 
Sequence to Sequence integrated with optimizations techniques such as counting entropy lost and 

dropout. We applied our application to 2 experiments and concluded with the claim that ETP has 

its effectiveness. In the first experiment, we created 25 experiment samples each with answers 

and classified by type and input them into our model to test its effectiveness. The result of the 
first experiment demonstrated that ETP has a high accuracy rate on easy commands. In the 

second experiment, we invited 10 participants to each propose 5 commands to ETP and rate their 

satisfaction. The result collected showed that though ETP hasn't demonstrated sophistication on 
high level or abstract commands, it is fully capable of intermediate and low level commands or 

even some high level commands specified with special words. In addition, participants have 

shown relatively positive comments on ETP, which is a positive sign to our goal for publication 
and that of helping more people. 

 

Some limitations of ETP are relatively obvious. First of all, the lack of a more comprehensive 

dataset limited its ability to produce problems that are out of range. In other words, ETP 
maintains high accuracy only on those commands that are similar or identical in its dataset. The 

second limitation may be the natural language processing component. There still exists a lot of 

space for optimization and improvement. Some optimization or even reconstruction, such as 
Bayesian Network and Hidden Markov Model, can be applied to our model [14][15]. The 

problem witha basic natural language processing component is the inability to comprehend 

complex commands. Commands that are out of the vocabulary range of ETP, such as “provide, 
write me”, are of none zone to ETP. 

 

The limitations mentioned above can be solved through various means. The limitation of lacking 

a comprehensive dataset, for instance, can be solved by acquiring such a dataset and feeding it 
into the model. One approach to do it is to collect open data from the internet. Since there are 

various platforms that provide coding examples, a web scraper program can easily access such 

resources. Another approach to solve this is through the voluntary feedback of the users. Users 
can evaluate the result they got and give ETP feedback that can improve the model, such as the 

example program that should be generated. Such an approach will surely need some 

modifications. In regard to the second limitation, such optimizations are fairly simple to 

implement and thus should not be a big issue. 
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