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ABSTRACT 

Effective multi-party computation protocols have been developed, but concerns regarding privacy and 
correctness persist. Classic results demonstrate that guaranteed output delivery can be achieved by assuming 
fairness and identifiable abort. However, if the majority is malicious, it is still challenging to design an 
efficient implementation that can deliver correct outputs while maintaining robustness and fairness. To 
address this issue, we have redesigned the secret-sharing mechanism and employed a semi-trusted third 
party (TTP) as the key manager to provide optimistic backup for output delivery. The verification and 
delivery procedures prevent the malicious parties from “stealing” the output, when there is at least one 
honest party. Furthermore, the TTP has no knowledge of output, so even if he is malicious and colluding, we 
only lose fairness. The decryption is needed only when misconduct is detected. Our scheme also enables 
identified abort for offline preprocessing, and the audit of the offline sub-protocols can be publicly 
performed, holding corrupted parties accountable before receiving private inputs. With fairness and 
identifiable abort, output delivery is guaranteed by excluding the cheaters.  
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1. INTRODUCTION 
In recent years, secure multi-party computation (MPC) has gained widespread attention from 
researchers due to its capability to securely aggregate data from multiple users and produce 
powerful results. SPDZ [1] and its variants [2 – 6] have played significant roles in the success of 
MPC. These protocols have two phases: an input-independent offline phase and an input-dependent 
online phase that is highly efficient. However, a single malicious party can cause the computation 
to fail by deviating from the protocol or providing false results. In this scenario, honest parties are 
unable to learn the outcome of the computation, while the malicious party may still gain access to 
it. To address this issue, numerous works have been developed to enhance the security of SPDZ by 
identifying malicious parties and imposing penalties for their actions. 

Security Model. The client-server model is a widely used approach in which clients provide inputs 
to servers and receive outputs from them. The servers perform the requested computations without 
learning the clients’ inputs. However, the clients in this model need to trust the servers to execute 
the desired function securely, and they typically have limited ability to guarantee that the servers 
deliver the correct results. To mitigate this issue, publicly identifiable abort is often utilized to 
ensure the correct execution of the protocol ([8 – 10]). This involves three steps: 1) verifying that 
the servers’ outputs are correct, 2) aborting the protocol if the result is incorrect, and 3) identifying 
the misbehaving server that causes the abort, which must be held accountable by everyone 
including the clients, servers, and external parties known as auditors or verifiers. This allows clients 
to stay simple while providing strong incentives for the servers to follow the protocol honestly 
instead of cheating. 
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Fairness and Robustness. The combination of public accountability and robustness, for which 
corrupted parties should not be able to prevent honest parties from receiving their output, is an 
emerging topic. This property, called “fairness,” is investigated in [11] and proven to imply 
robustness assuming a broadcast channel. In general, this property can be achieved by using 
cryptographic tools such as [12 – 14]. However, even with optimistic models and semi-trusted third 
parties, for SPDZ-like protocols, these similar approaches were all considered to be unaffordable, 
as discussed in [5]. As a consequence, the protocols with identifiable abort for [5], [10], and [15] 
have to publicly reconstruct the secret before verifying the result, allowing corrupted parties to 
learn the output even though they cheated. The work in [16] instead uses threshold-t secret-sharing 
to support robustness. Despite of its better efficiency and usability, when the number of dishonest 
parties is not known, it is difficult to choose appropriate design parameters. For example, in its 
design only t server parties are needed to corrupt to obtain the secret without public opening. As a 
result, even with identifiable abort, if a malicious majority is assumed, having robustness and 
fairness is still an open problem. 

One Honest Server. SPDZ-like protocols may lose the privacy and even security properties, when 
all parties are malicious. Taking the auditable SPDZ of [3] as an example, we find that it cannot 
detect cheating during the generation of multiplication triples when no server is honest. A fix to 
this issue would be worthless, because it might make the whole scheme inefficient. Therefore, we 
assume the presence of one honest server throughout our work. 

Our Contribution. The proposed solution, called the “Multiplicative-Ciphered Secret-Sharing” 
(MUSS) scheme, implements a public auditable MPC with identifiable abort and fairness using an 
optimistic decryption phase. The framework is similar as SDPZ and has the offline preprocessing 
phase and online computation phase. Compared to the auditable SPDZ protocol in [3], our protocol 
has the similar online complexity with identifiable abort and fairness if no misconduct occurs. We 
also have much lower complexity than that of the protocol in [16], as our scheme does not need 
zero-knowledge proofs for the shares in the online phase. 

Robust and Fair Online Phase. Parties that engage in manipulating the computation can be 
identified by examining their commitments and may be excluded from the protocol. A semi-trusted 
third party (TTP) manages a global key pair of public-key encryption (PKE) for the multiplicative 
ciphers, not the shares. The decryption is not necessary if all parties behave honestly for opening 
the shares. Our scheme provides better privacy than [17] as the secret aggregation or decryption is 
performed by the computing parties, not the TTP. The inability of adversaries to know the output 
until successful delivery enables the player-elimination technique proposed in [11] to achieve 
fairness and robustness. Besides, if the TTP is dishonest, we only lose fairness and robustness, and 
the protocol is still public auditable with identifiable abort. 

Efficient Offline Phase. Our scheme improves upon previous approaches Overdrive's LowGear [6] 
by utilizing homomorphic addition to compute MUSS shares of random values and triples in a 
single, trackable routine. The correctness of the computation is guaranteed by verifying the double-
sharing correlation using a zero-knowledge proof (ZKP). This creates a checkpoint specifically for 
the offline phase, adding an extra layer of security and auditability. In addition, our verification 
covers the generation of multiplicative triples and thus does not need an additional information-
theoretic check as in [3]. 

Short Proof. It is necessary to ensure the correctness of each share, when correlated randomness is 
generated in the preprocessing phase. This can be guaranteed through the use of a short ZKP from 
each party, which enables a speedy start to the subsequent online phase. The approach, which is 
based on knowledge-of-exponent assumptions (KEA) [18] and short-pairing [19] allows for the 
verification of multiple shares generated during the offline phase as well as commitments in a 
batch. 
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Related Works. In the standard model, it is impossible to guarantee fairness with corrupted 
majority [20]. To overcome this impossibility, many protocols have been proposed to achieve 
fairness in non-standard models. In [12], the synchronization using a global ledger makes parties 
releasing their outputs in a timely manner. However, this technique compensates the honest party 
only with earnings (e.g., Bitcoins), so it is not really fair. Another approach involves employing 
semi-trusted third parties or physical assumptions [13]. It was recently shown that fair computation 
can be achieved by applying a multi-party fair exchange protocol in [14], [21], and [22], in which 
the exchange uses ciphertexts of output and requires a third party to generate a global key pair. As 
the encryption of shares demands excessive overhead in the online phase, this way is too expensive 
for SPDZ protocols. A robust MPC with identifiable abort is proposed in [16], where robustness is 
obtained by t-secure secret-sharing and needs ZKP for every share opening in the online phase. A 
cryptographic solution, described in [17], is suggested to achieve fairness, but it incurs high 
complexity and relies on an external party for decryption. Although our scheme also uses a TTP to 
provide encryption keys, it requires the ciphertexts of multiplicative ciphers in the offline phase, 
such that the online phase does not need to invoke cryptographic functionalities for the computation. 
The critical path of online phase stays simple when no misbehaviour happens. Besides, the 
robustness is implied by fairness and identifiable abort, for which the generation of ZKP is 
performed only once in the offline phase. 

2. OVERVIEW 

2.1. Security Model 

Before designing the specific implementation, we must first establish the security model. Secure 
computation in the standalone model is defined through the real-ideal world paradigm. Throughout 
this paper, we will consider protocols that are executed over a synchronous network with static and 
rushing adversaries. In the real world, all parties communicate through the protocol Π, while in the 
ideal world, the parties send their inputs to an ideal functionality ℱ, also known as the trusted party, 
which computes the desired function 𝒞 and returns the result to the parties. In informal terms, the 
protocol Π is considered to securely realize the functionality ℱ if, for every real-world adversary 
𝒜, there exists an ideal-world adversary 𝒮 (also known as the simulator) such that the joint output 
distribution of the honest parties and the adversary 𝒜 in the real world is indistinguishable from 
the joint output distribution of the honest parties and 𝒮 in the ideal world. 

The security requirements of the protocol are defined through the concept of ideal functionality 
with Public Accountability with Output Fairness (PAOF). In this setup, there is a polynomial-time 
honest party 𝑃஺ , that can retrieve all the output messages from the trusted party, assess their 
correctness, and output the correct result and/or a set of parties 𝐿, that are deemed responsible for 
any misbehavior. The output of the protocol is in the form of a 2-tuple (𝑦, ⊥), (𝑦, 𝐿), or (⊥, 𝐿). 

The Ideal Model with PAOF. Assume 𝒫 = {𝑃௜}௜∈{௡} to be the set of computing server parties, 
ℐ = {𝐼௞}௞∈{௠} the set of input client parties, 𝐷 ⊂ 𝒫 the set of corrupted computing parties, and 
𝒟ூ ⊆ ℐ the set of corrupted input parties. Before the execution, the non-adaptive adversary 𝒜 
decides ℒூ ⊆ 𝒟ூ  and ℒ௙, ℒ௣, ℒ௢, ℒ௞ ⊆ 𝒟. Let ℒூ be the set of input parties hanging or giving ill-
formed inputs, ℒ௣ be the set of computing parties manipulating the computation results, ℒ௢ be the 
set of computing parties cheating with the ciphertexts of MUSS ciphers, and ℒ௞  be the set of 
computing parties cheating with the plaintexts of MUSS ciphers. With 𝑚 ≤ 𝑛 , the evaluation 
function 𝒞 has 𝑚 input and 𝑚 output gates. The execution of ideal model with PAOF is denoted 
as ℱ୓୬୪୧୬ୣ, which is briefly described as follows. 

Inputs: The i-th party’s input is denoted by 𝑥௜ and 𝒙 = (𝑥ଵ … , 𝑥௡). We assume that all valid inputs 
are defined in 𝔽. The adversary receives an auxiliary input 𝑧.  
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Initialization: The trusted party informs the adversary 𝒜 of the beginning of execution with the 
parameter set (𝒞, 𝔽, 𝔾). 𝒜 sends the lists of malicious parties that corrupt the input and evaluation 
outcome to the trusted party. This decision is made by 𝒜 and may depend on (𝒞, 𝔽, 𝔾) and the 
auxiliary input 𝑧. If misconduct is detected, the trusted party will catch ℒ௙ and abort the process. 

Send Inputs to Trusted Party: Any honest party 𝐼௜  sends its input 𝑥௜  to the trusted party. The 
corrupted parties, controlled by 𝒜, may either send their received input or send some other input 
to the trusted party. This decision is made by 𝒜 and may depend on the input from the corrupted 
parties and the auxiliary input. If the invalid input is from 𝐼௜ ∈ ℒூ, the trusted party will catch 𝐼௜ 
and abort the process. 

Compute: For the i-th gate 𝑓௜ ∈ 𝒞, the trusted party computes 𝑦௜ = 𝑓௜(𝒙) for computation gates, 
and for output gates it sets the outcome to ⊥ with replying Reject if the computation or output is 
corrupted. Otherwise it replies Accept. 

Trusted Party Answers Auditor: Upon the request by the auditor, the trusted party outputs ℒ௣ with 
Reject or replies Accept if no cheating is found. 

Open: Upon the request by all parties, the trusted party outputs the result 𝒚, if no misbehaviour 
occurs. Or it sends out ℒ௢ if the ciphertexts of MUSS ciphers fail the verification, and it sends ℒ௞ 
if the plaintexts of MUSS ciphers are incorrect. Then if the TTP 𝑃் is honest, 𝒚 will be delivered 
fairly to all parties. If 𝑃் actively corrupts the decryption, the ideal model only loses fairness, and 
𝑃் will be identified. 

The Real Model with PAOF. Let us consider the real model in which a real 𝑛-party protocol Π is 
executed with the set of 𝑛 computing parties, 𝑚 input parties, and trusted honest parties 𝑃஺ and 𝑃். 
Let 𝒟 and 𝒟ூ denote the set of corrupted computing and input parties, controlled by an adversary 
𝒜. In this case, the adversary 𝒜 sends all messages in place of corrupted parties, and may decide 
a polynomial-time strategy arbitrarily. In contrast, the honest parties follow the instructions of Π. 
Then the real execution of Π on inputs 𝒙, auxiliary input 𝑧 to 𝒜, and security parameter 𝜆, denoted 
by Realஈ,𝒜(௭),{𝒟,𝒟಺}(𝒙, λ), is defined as the output vector of the honest parties and the adversary 𝒜 
from the real execution of Π. 

With the ideal-real model, the PAOF can be defined as follows: 

Definition 1 (PAOF): Let 𝒞 be a circuit with inputs 𝒙. A protocol Π is called publicly accountable 
with output fairness whenever one computing party, 𝑃஺, and 𝑃் are honest, for every non-uniform 
probabilistic polynomial-time adversary 𝒜  for the real model, there exist a non-uniform 
probabilistic polynomial-time adversary 𝑆  for the ideal model ℱ୓୬୪୧୬ୣ  such that for every 
𝒟⊂ 𝒫, 𝒟ூ ⊆ ℐ, every balanced vector 𝒙 ∈ 𝔽௠, and every auxiliary input 𝑧 ∈ 𝔽:  

Idealℱో౤ౢ౟౤౛,ௌ(௭),{𝒟,𝒟಺}(𝒙, λ) =௖ Realஈ,𝒜(௭),{𝒟,𝒟಺}(𝒙, λ) 

Robustness. It should be noted that cheating input parties can only be detected if their inputs are 
invalid. Any corrupted inputs from the adversary in the ideal functionality correspond to true 
inputs. Our strategy is to iterate the protocol by excluding the parties which misbehave in the 
previous iteration. In this study, we assume that the adversary has a static strategy, with the set of 
malicious input parties determined at the beginning of the protocol execution and remaining 
unchanged. The set of malicious computing servers, on the other hand, is determined at the 
beginning of each iteration and may change in the next iteration. To accommodate robustness, the 
model first has to include the property that the output is fairly delivered as long as one computing 
party and the TTP are honest. Because the ideal model ℱ୓୬୪୧୬ୣ itself does not provide robustness 
in any sense, the following theorem will be proven in the full version by constructing a protocol in 
the ℱ୓୬୪୧୬ୣ-hybrid model. 
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Theorem 1 (Strong Robustness): Assume that the adversary 𝒜  has a static strategy that 
ℒ௙, ℒ௣, ℒ௢, ℒ௞, and ℒூ are determined before the execution of every iteration. Let 𝒞 be a circuit 
with predetermined inputs 𝒙෥ ∈ 𝔽௠and output 𝒚 ∈ 𝔽௠. Let 𝒙∗ = (𝑥ଵ

∗ … , 𝑥௠
∗ ) with 𝑥௜

∗ = 𝑥෤௜ if 𝑥௜ =
⟘ or 𝑥௜

∗ = 𝑥௜ . If there is a protocol with PAOF, there exists a protocol with PAOF to output 𝒚 =
𝒞(𝒙∗) for overwhelming probability, with polynomially bounded environments E, whenever one 
computing party, 𝑃஺, and 𝑃் are honest. 

2.2. Important Blocks 

As noted in the introduction, our scheme utilizes a unique combination of secret-sharing and proof 
mechanisms, allowing for public auditing and fair delivery of the results. In this section, we will 
briefly outline our new secret-sharing technique and provide an overview of our MPC protocol.  

Multiplicative-Ciphered Secret-Sharing. Combining the concepts of MAC and repetition, we 
devise an innovative scheme to share the secret. Assume that a distributive encryption and 
decryption are set up. Taking Alice and Bob as an instance, we show how to generate correlated 
randomness without the input.  

Example 1 (MUSS): Assume the ciphertext is denoted as ⟦∙⟧ with homomorphic addition defined 
as ⟦𝑎⟧ ⊕ ⟦𝑏⟧ = ⟦𝑎 + 𝑏⟧.  Alice randomly samples 𝛾௔ and δ௔ and broadcasts ⟦𝛾௔⟧ and ⟦δ௔⟧; Bob 
samples 𝛾௕ and δ௕ and broadcasts ⟦𝛾௕⟧ and ⟦δ௕⟧. So Alice and Bob both have ⟦𝛾⟧ and ⟦δ⟧ for 𝛾 =
𝛾௔ + 𝛾௕ and δ = δ௔ + δ௕. The encryption is done by a distributive scheme of PKE with a key pair 
that everyone agrees on. Then Alice samples 𝑑 and broadcasts ⟦𝛾⟧ ∙ 𝑑; Bob samples 𝑐 and 𝑓 and 
broadcasts ⟦𝛿⟧ ∙ 𝑐 − 𝑓 . Publicly both have ⟦𝑒⟧ ← ⟦𝛾⟧ ∙ 𝑑 + ⟦𝛿⟧ ∙ 𝑐 − 𝑓 . The correlated 
randomness between plain and encoded shares (𝑎 = 𝑒 + 𝑓 = 𝛾𝑑 + 𝛿𝑐) for secret 𝑎 is obtained by 
letting Alice call the distributive decryption of ⟦𝑒⟧, so 𝑒 is decrypted privately to her. As shown 
above, the multiplicative ciphers are hiding from both parties. When reconstructing 𝑎, semi-honest 
Alice and Bob announce e and f, respectively, or instead they can announce d and c and call for the 
distributive decryption of ⟦𝛾⟧ and ⟦𝛿⟧. 

In the scenario of a single malicious party, our scheme is able to detect deviations from the protocol 
by checking the correlation of double-shared randomness. This check is based on the correlation 
between the encoded and plain shares and can be verified using an information-theoretic method 
or ZKP which supports linear operations. 

Fairness. The sharing scheme of SPDZ has two issues regarding fairness: the first is the opening 
of secrets prior to checking the MAC, and the second is the unfairness in output delivery. While 
many works have addressed the first issue, it is still a challenge to address both simultaneously. 
Our scheme adopts techniques based on information-theoretic security to ensure that the output is 
properly opened to all parties or not disclosed in the event of an abort otherwise. 

Secret Opening. As suggested in [5] for SPDZ, a check to test the correlation of MUSS shares, e.g., 
𝑎 = 𝑒 + 𝑓 = 𝛾𝑑 + 𝛿𝑐, can serve as the first step of audit. As the MUSS sharing ciphers 𝛾 and 𝛿 
are additively shared and committed by Alice or Bob, anyone cannot alter the shares without failing 
the check. Since if they could, they would be able to guess the MUSS ciphers.  For privacy-
preserving, the parties can only open the encoded shares 𝑑 and 𝑐. Using the information-theoretic 
technique similar as the one used for MAC [2], we can check the correlation without opening the 
MUSS ciphers. The opening of 𝛾 and 𝛿 will not happen until the initialization and computation 
stages are finished without any error detected. For a practical implementation, we design each 
cipher 𝛾 to be kept by all parties in three versions: 1. committed additive shares in plaintexts, 2. 
ciphertexts by a distributive scheme of PKE (1. and 2. are already mentioned in the example), and 
additionally, 3. Ciphertext ⟦𝛾௔⟧௣௞௢ and ⟦𝛾௕⟧௣௞௢, which are encrypted by a PKE scheme using a 
global key pair (𝑠𝑘𝑜, 𝑝𝑘𝑜). The global keys are managed by a TTP. Note that ⟦∙⟧௣௞௢ and ⟦∙⟧ use 
different PKE key pairs. Once all parties agree to open the secret, Alice and Bob exchange ⟦𝛾௔⟧௣௞௢, 
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⟦𝛿௔⟧௣௞௢, ⟦𝛾௕⟧௣௞௢, and ⟦𝛿௕⟧௣௞௢, and the relation of the three versions can be verified by running a 
ZKP scheme. If ciphertexts pass the check, the shares of MUSS ciphers and 𝑠𝑘𝑜  will be 
broadcasted from Alice, Bob, and the TTP, respectively. All parties can verify the plaintext by 
opening the commitment and catch the malicious party who cheats in the process. 

Security and Privacy. Assuming the sharing of two secrets 𝑎 = 𝛾𝑑 + 𝛿𝑐 and 𝑎′ = 𝛾𝑑′ + 𝛿𝑐′, when 
opening the encoded shares (𝑑, 𝑐) and (𝑑′, 𝑐′), the question is that, if there is any advantage of 

guessing the secret 𝑎  and 𝑎′ . The answer is no. Since ቂ
𝑑 𝑐
𝑑′ 𝑐′

ቃ  is a full-rank matrix with a 

probability close to 1 [29], 𝑎 and 𝑎′ are indistinguishable to two independent uniform random 
samples. Formally, we have the following theorem to show the security of opening encoded shares: 

Theorem 2 (Perfect Secrecy): Assume a cipher ℋ = (𝔽௠, 𝔽௡, 𝐾𝐺, Φ, Ψ) with message space 𝔽௠ 
and key space 𝔽௡ that a probabilistic PTTM Φ: 𝔽௠ × 𝔽௡ → 𝔽௠௡ and  Ψ: 𝔽௠௡ × 𝔽௡ → 𝔽௠ with 
the definition Ψ (𝐃, 𝐠) → 𝐃𝐠் =  𝒂 = (𝑎ଵ … , 𝑎௠) with 𝐃 = ൛𝑑௜,௝ൟ

௜∈{௠},௝∈{௡}
  and 𝐠 = (𝑔ଵ … 𝑔௡) 

for m≤ 𝑛. If 𝐃 has full rank, and 𝐠 is statistically indistinguishable from samples drawn from 
uniform random distribution in 𝔽௡ , the scheme ℋ  has perfect secrecy except a negligible 
probability. 

Proof: We can prove perfect secrecy by showing 𝑃(𝐠 ← 𝐾𝐺: Φ(𝒂, 𝐠) = 𝐃|𝐃, 𝒂) = 𝑃(𝐠 ←
𝐾𝐺: Φ(𝒂′, 𝐠) = 𝐃|𝐃, 𝒂′), except a negligible probability. For every pair 𝒂 and 𝒂′ we always can 
find a vector 𝐠ଵ such that 𝒂 = 𝐃 𝐠ଵ

் and  𝐠ଶ such that 𝒂′ = 𝐃 𝐠ଶ
். The probability to have such 𝐠ଵ 

is  𝑃(𝐠 ← 𝐾𝐺: Φ(𝒂, 𝐠) = 𝐃|𝐃, 𝒂) = ∑ 𝑃(𝐠ଵ, 𝒂 = 𝐃 𝐠ଵ
்|𝐃, 𝒂)𝐠భ

= ∑ 𝑃(𝐠ଵ) = ∑ 1/𝒂ୀ𝐃 𝐠భ
೅𝒂ୀ𝐃 𝐠భ

೅

|𝔽|௡, which is equal to that to have 𝐠ଶ such 𝒂 = 𝐃 𝐠ଶ
். It leads to perfect secrecy of ℋ.                 □ 

By the security proofs in the full version of the paper it will be demonstrated that our protocol keeps 
the matrix 𝐃 full ranked except a negligible probability. 

The additive sharing with MAC in SPDZ is vulnerable to corruption by two collusive parties who 
lie about their shares without altering the sum. This renders Lemma 1 in [3] false, as the parties can 
deviate from the protocol and still pass the check. Despite this, the corruption can still be detected 
during the audit, and therefore, it does not undermine the security proof of [3]. However, the 
maliciously controlled share values can reduce the security level and lead to information leakage, 
which may give an advantage to an eavesdropper. Our work overcomes this issue by using random 
MUSS ciphers, resulting in a negligible success probability of such cheating. 

3. THE PROTOCOL 

Let 𝔾 be some Abelian multiplicative subgroup of order 𝑞 where the DLP is hard to solve (with 
respect to a given computational security parameter λ). The protocol will evaluate a circuit 𝒞 over 
𝔽 =  ℤ௤ whereas we use the group 𝔾 to commit to the output. We let 𝑔, ℎ ∈ 𝔾 be two generators 
of the group 𝔾 where 𝑔 and ℎ are chosen by some random oracle with a common reference string 
(CRS) as the input. 

We assume a secure point-to-point network between all parties and a broadcast functionality. We 
also use the commitment functionality ℱେ୭୫, the random oracle ℱୖ୬ୢ for giving a random value 
over 𝔽 to all parties, and the bulletin ℱ୆୪୲ to handle all communication, such that nothing in the 
bulletin can ever be changed or erased. These functionalities are outlined in Figure 1. 

3.1. Secret-Sharing Scheme 

The online phase of the computation is conducted using the MUSS scheme, which is defined as 
below: 
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Definition 2 (MUSS): Let x, y, e ∈ 𝔽, 𝜶 =  (𝛼ଵ, . . . , 𝛼௡) and then the Multiplicative-Ciphered 
Secret-Sharing of x is defined as [𝑥]𝜶 = ൫(𝑥ଵ, . . . , 𝑥௡), (𝑥෤ଵ, . . . , 𝑥෤௡)൯ , where the correlation x = 
∑ 𝛼௜

௡
௜ୀଵ 𝑥௜  =  ∑ 𝑥෤௜

௡
௜ୀଵ  holds. Since the keys 𝜶 are fixed for the whole session, [𝑥]𝜶 can be denoted 

as [𝑥] without confusion. Each player 𝑃௜ will hold its MUSS shares 𝑥௜  and 𝑥෤௜ of [𝑥]. The key 𝛼௜ for 
𝑃௜ is additively shared by all players, such that every player has 𝛼௜௝  and 𝛼௜ = ∑ 𝛼௜௝

௡
௜ୀଵ . Moreover, 

we define [𝑥] + [𝑦] = ൫(𝑥ଵ + 𝑦ଵ, . . . , 𝑥௡ + 𝑦௡), (𝑥෤ଵ+𝑦෤ଵ, . . . , 𝑥෤௡+𝑦෤௡)൯ , 𝑒 ∙ [𝑥] = ൫(𝑒 ∙ 𝑥ଵ, . . . , 𝑒 ∙

 𝑥௡), (𝑒 ∙ 𝑥෤ଵ, . . . , 𝑒 ∙ 𝑥෤௡)൯. We say that [𝑥] ≜ [𝑦] if the shares of x, y in [𝑥], [𝑦] reconstruct to the 
same value. 

Obviously, MUSS is linear. If all parties agree to apply one of defined linear functions, then they 
can perform these on the MUSS shares without interaction. For the addition between the MUSS 
share and a public value 𝑒, one needs to open a random MUSS share (e.g. [𝑟]) as a gadget, so 
[𝑒 + 𝑥] = [𝑥] + (𝑒𝑟ିଵ) ∙ [𝑟]. 

3.2. Commitment Scheme 

The proposed protocol forces the result given by the computing parties to be bound by a public 
witness. First, the parties have to commit the input by sending commitment to the bulletin. Since 
the commitment scheme uses a one-way function with homomorphic property, the expected 
commitment of output can be derived by a public auditor. The ways to catch the cheater include 
checking if each share opens the commitments correctly (as in [3]), and letting the party provide 
ZKP to prove its ability to give the correct decommitment (as in [16]). Our commitment scheme 
has a similar format as in [3]: we carry both the MUSS share of secret [𝑥] as well as the MUSS 
share of randomness [𝑟] of the commitment throughout the whole computation. The commitment 
handle to a value 𝑥  is a Pedersen commitment 𝖤(௚,௛)(𝑥, 𝑟) =  𝑔௫ℎ௥  with 𝖤(௚,௛)([𝑥], [𝑟]) =

ቀ(𝑔௫భℎ௥భ , … , 𝑔௫೙ℎ௥೙), ൫𝑔௫෤భℎ௥̃భ , … , 𝑔௫෤೙ℎ௥̃೙൯ቁ. When opening MUSS shares, we reconstruct the 

secret through either 𝑥௜ or 𝑥෤௜, and the randomness (𝑟௜ or 𝑟̃௜) is also revealed. For simplicity, since 
(𝑔, ℎ) is fixed within one session, 𝖤(௚,௛)([𝑥], [𝑟]) can be denoted as 𝖤([𝑥], [𝑟]). As discussed in 
[5], the computation of commitments is excluded in the circuit evaluation and invoked only after 
the failure of information-theoretic checks.  This “on-demand” scheme yields favorable saving, 
especially when the adversary cheats at a lower rate in a large circuit. 

3.3. Online Phase 

The online phase of our protocol uses ℱ୓୤୤୪୧୬ୣ for offline preprocessing that is demonstrated in the 
full version of the paper. The commands of ℱ୓୤୤୪୧୬ୣ  support single-instruction multiple-data 
(SIMD) processing with factors σ௙. Taking 𝑚 inputs, the circuit 𝒞 over 𝔽 has ν୧୬ input gates, ν୫୳୪ 
multiplication gates, and 𝑚 output gates, with 𝑚 ≤ 𝑛, the number of computing parties. The online 
phase is presented in Figure 2 and Figure 3, which evaluates the circuit 𝒞 of 𝑚 input gates and m 
output gates. The stages Input and Compute are executed for each input and function gate of 𝒞, 
respectively, and Initialization, Audit, and Open are invoked only once per circuit. 

Initialization. The ideal functionality of the offline phase ℱ୓୤୤୪୧୬ୣ sets up the MUSS ciphers. The 
commitment scheme obtains the key from the random oracle 𝒦. The public-key infrastructure 
(PKI) is given by ℋ and will be elaborated in Sec. 3.5.1. The TTP publishes the global public key 
𝑝𝑘𝑜. Each computing party 𝑃௝  privately keeps the additive shares 𝛼௜,௝ for 𝑖 ∈ {𝑛}, where we set 

∑ 𝛼௜,௝ = 𝛼௜௜∈{௡} . With 𝜶ഥ௝ = ൛𝛼௜,௝ൟ
௜∈{௡}

, 𝑃௝  commits to 𝜶ഥ௝  toward ℱ୆୪୲ by 𝑑௝ = 𝖤(𝒈,௛)
(௡)

൫𝜶ഥ௝ , 𝛽௝൯ and 

encrypts ൫𝜶ഥ௝ , 𝛽௝൯ to have 𝑐௝ = ൳(𝜶ഥ௝ , 𝛽௝)൷
௣௞௢

  along with its ZKP ζ௝ to show the same plaintexts of 

𝑐௝  and 𝑑௝. The generation and verification of ζ௝  will be provided in Sec. 3.5.3. Finally, the protocol 
asks the functionality ℱ୓୤୤୪୧୬ୣ to generate random values and multiplication triples. ℱ୓୤୤୪୧୬ୣ has its 
own check and audit for the output to ensure each player to have the correct share values as they 
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committed to. If the misconduct is detected in ℱ୓୤୤୪୧୬ୣ, the malicious parties will be identified as 
𝐿௙ , and the protocol will be aborted. 

Input. Each input client party in 𝐼 is allowed to submit a value to the computation, where two 
random values are secretly opened to it. The client can then check that the commitment is correct, 
and blinds its input using the opened values. Here the protocol can only detect the blatant cheating, 
such as hanging or ill-formed input, we cannot prevent the malicious input client from giving an 
incorrect blinded input. 

Compute (Add and Multiply). The protocol uses the linearity of the MUSS shares to perform linear 
operations on the shared values, and multiplies two representations using the multiplication triples 
from the preprocessing using the circuit randomization technique [23]. The multiplication requires 
to reconstruct values, and this is done by only opening the plain shares to keep the ciphers private. 
We do not check the recovered values in this stage and defer the check to the output gate.  

Compute (Out). First, we check all the multiplications in the circuit by Πେ୦୩୔୪୬
σ  (Figure 6 and cf. 

Sec. 3.3.2) for the opened plain shares, where checking ⟨𝜂⟩, ⟨𝜌⟩, and ⟨𝑡⟩ takes random values 
⟨𝜂′⟩, ⟨𝜌′⟩, and ⟨𝑡′⟩ as additional input. Then the encoded shares of output are published, and the 
correlation is checked by using the protocol Πେ୦୩୉୬ୡ

σ  (Figure 4 and cf. Sec. 3.3.1). If any of them 
fails, the auditor 𝑃஺ will invoke Audit. If both checks output Accept, all parties will invoke Open 
to output the result. 
Audit. There are two audit procedures in the online protocol, which will be invoked by 𝑃஺ when 
the precedented information-theoretic checks fail. One is to check the plain shares opened in 
Multiply, and the other is to check the encode shares for output delivery. If the audit passes, it 
means that the encoded shares are correct, and we are still going to Open. Please be noted that we 
do not identify anyone regarding the misbehavior happening in Πେ୦୩୉୬ୡ

σ  and Πେ୦୩୔୪୬
σ  since it 

eventually does not prevent opening. 

ℱେ୭୫ 

Commit: On input (𝐜𝐨𝐦𝐦𝐢𝐭, 𝑣, 𝑟, 𝑖, 𝑗, 𝑖𝑑) by 𝑃௜, where both 𝑣 and 𝑟 are either in 𝔽 or ⊥, and 
𝑖𝑑 is a unique ID, if 𝑣 and 𝑟 are either in 𝔽 or ⊥, store (𝑣, 𝑟, 𝑖, 𝑗, 𝑖𝑑) on a list and outputs 
(𝑖, 𝑖𝑑) to 𝑃௝ . Otherwise output (⊥, 𝑃௜) to 𝒜. 
Open: On input (𝐨𝐩𝐞𝐧, 𝑖, 𝑗, 𝑖𝑑) by 𝑃௜, output (𝑣, 𝑟, 𝑖, 𝑗, 𝑖𝑑) to 𝑃௝ . If (𝐧𝐨_𝐨𝐩𝐞𝐧, 𝑖, 𝑗, 𝑖𝑑) is given 
by a dishonest 𝑃௜ ∈  𝒫, output (⊥, ⊥, 𝑖, 𝑗, 𝑖𝑑) to 𝑃௝ . 

ℱୖ୬ୢ 

Let 𝔽 be a field such that there exists a PPT TM to efficiently sample value 𝑟 ∈ 𝔽 uniformly 
at random. 

Random sample: Upon receiving (𝐫𝐚𝐧𝐝, 𝔽) from all parties, sample a uniform 𝑟 ∈ 𝔽 and 
output (𝐫𝐚𝐧𝐝, 𝑟) to all parties. 

ℱ୆୪୲ 

Store: On input (𝐬𝐭𝐨𝐫𝐞, 𝑖𝑑, 𝑥) from 𝑃௜ ∈ 𝒫: 
Case 1: If (𝑖𝑑, 𝑖, 𝑦)  is stored, reply Reject. 
Case 2: If not, send (𝑖𝑑, 𝑖, 𝑥) to 𝒜 and store it. reply Accept. 
Read: On input (𝐫𝐞𝐚𝐝, 𝑗, 𝑖𝑑) from 𝑃௜: 
Case 1: if (𝑖𝑑, 𝑗, 𝑥) is stored for some 𝑃௝ , reply x.  
Case 2: if (𝑖𝑑, 𝑗, 𝑥) is not stored, reply Reject. 
 

Figure 1. Ideal functionalities for the commitment, random oracle, and public bulletin. 

354                                   Computer Science & Information Technology (CS & IT)



 

Open. Once all the parties agree that encoded shares are correct, each computing 𝑃௝  will broadcast 
the ciphertext 𝑐௝ , commitment 𝑑௝, and ZKP ζ௝ to all the other parties, so all parties can verify the 

Π୓୬୪୧୬ୣ 

The parties evaluate the circuit 𝒞 over 𝔽, which has ν୧୬  input gates and ν୫୳୪  multiplication 
gates. Every party is given ℱ୏ୋୈ , RO 𝒦 with the 𝖢𝖱𝖲  as input to choose the generator 
𝑔଴, 𝑔ଵ, … , 𝑔௡, ℎ ∈ 𝔾 , and RO 𝒵 to verify ZKP.  σ௙  is the offline SIMD factor. Set 
 𝒈={𝑔௜}௜ୀ(଴,…,௡). 

Initialize: On input (Init, 𝒞, 𝔽, 𝔾) from all parties.  

1) The parties send (Init, 𝔽, 𝔾, 𝒈, ℎ) to ℱ୓୤୤୪୧୬ୣ . If ℱ୓୤୤୪୧୬ୣ  replies Accept, 𝑃்  has the global 
key pair (𝑝𝑘𝑜, 𝑠𝑘𝑜). Each 𝑃௝  in 𝒫 randomly generates and commits to 𝜶௝ with randomness 
𝛽௝  to get 𝑑௝. 

2) The parties choose the smallest ν୰  ≥ (2ν୧୬ + 4ν୫୳୪) , ν୲୰୮ ≥  ν୫୳୪ such that σ௙  divides 

both ν୰ and ν୲୰୮. Then send ൫Single, σ௙ , 𝑔଴, ℎ൯ (ν୰/σ௙) times, ൫Triple, σ௙, 𝑔଴, ℎ൯ (ν୲୰୮/σ௙) 
times to ℱ୓୤୤୪୧୬ୣ. 

3) Send  ൫Audit, σ௙൯ (ν୰/σ௙ + ν୲୰୮/σ௙) times to ℱ୓୤୤୪୧୬ୣ.  
4) If ℱ୓୤୤୪୧୬ୣ  replies Accept, all parties have random values ⟨𝑥⟩ ,  ⟨𝑦⟩  (for Input) , ⟨𝑡⟩  (for 

Multiply), ⟨𝜂′⟩, ⟨𝜌′⟩, and ⟨𝑡′⟩ (for Πେ୦୩୔୪୬
t ) and multiplication triple (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩). 

5) Otherwise if ℱ୓୤୤୪୧୬ୣ  replies Reject and ℒ௙ , then the protocol is aborted with output (⟘, 
ℒ௙). 

Input: On input (Input, 𝐼௜ , 𝑖𝑑(𝑢௜), 𝑢௜)  from each 𝐼௜ ∈ ℐ ,  𝑖 ∈ {𝑚}  and 
൫Input, 𝐼௜ , 𝑖𝑑(𝑢௜)൯ from each 𝑃௜ ∈ 𝒫 , with 𝑖𝑑(𝑢௜)  a new ID and 𝑢௜ ∈ 𝔽  using a new 
random value ⟨𝑥⟩ = ([𝑥], [𝑝], 𝜀⟨௫⟩) and ⟨𝑦⟩ = ([𝑦], [𝑟], 𝜀⟨௬⟩). 
1) 𝐼௜  privately receives (𝑥෤௝ , 𝑝෤௝) and (𝑦෤௝ , 𝑟̃௝) for each 𝑗 ∈ {𝑛}, and checks the commitment. It 

broadcasts 𝑟௜  such that 𝑢௜ = 𝑟௜ ⋅ 𝑥 + 𝑦. 
2) All players check if 𝑟௜ is valid. If not, add 𝐼௜ to ℒூ, and then protocol is aborted by replying 

(⟘, ℒூ). Or get ⟨𝑢௜⟩= 𝑟௜ ∙ ⟨𝑥⟩ + ⟨𝑦⟩ and reply Accept. 

Compute: On the input (𝐂𝐨𝐦𝐩𝐮𝐭𝐞, 𝒞) from all parties. If Initialize has been executed and 
inputs for all input wires of 𝒞 have been assigned, evaluate every 𝑓 ∈ 𝒞 as follows: 
 Add: For two values ⟨𝑥⟩, ⟨𝑦⟩ with 𝑖𝑑(𝑥) and 𝑖𝑑(𝑦).  

1) All players locally compute ⟨𝑧⟩ = ⟨𝑥⟩ + ⟨𝑦⟩. Assign a new 𝑖𝑑(𝑧).  
Multiply: Multiply two values ⟨𝑥⟩, ⟨𝑦⟩ with 𝑖𝑑(𝑥) and 𝑖𝑑(𝑦) using a random value ⟨𝑡⟩ and 
multiplication triple ⟨𝑎⟩, ⟨𝑏⟩, and ⟨𝑐⟩. The output is ⟨𝑧⟩ with a newly assigned 𝑖𝑑(𝑧). 
1) The players calculate ⟨𝜂⟩ = ⟨𝑥⟩ − ⟨𝑎⟩ and ⟨𝜌⟩ = ⟨𝑦⟩ − ⟨𝑏⟩.  
2) The players reconstruct ⟨𝜂⟩ = ([𝜂], [𝜒], ε⟨ఎ⟩ ) , ⟨𝜌⟩ = ([𝜌], [μ] , ε⟨ఘ⟩ ) , and ⟨𝑡⟩ =

([𝑡], [𝑠], ε⟨௧⟩ ) by only opening (𝜂෤௜ , 𝜒෤௜), (𝜌෤௜, 𝜇෤௜), and (𝑡̃௜, 𝑠̃௜) for each 𝑖 ∈ {𝑛}. Open these 
results to ℱ୆୐୘. 

3) Each player locally calculates  ⟨𝑧⟩ =  ⟨𝑐⟩  +  𝜌 ⋅ ⟨𝑎⟩ + 𝜂 ⋅ ⟨𝑏⟩ +  𝑟 ⋅ ⟨𝑡⟩, such that 𝑟 ⋅
𝑡 =  𝜂 ⋅ 𝜌. 

Output: The output is ⟨𝑧௞⟩ with an already assigned id(𝑧௞) for each 𝑘 ∈ {𝑚}. 
1) The parties open the shares of ⟨𝑧௞⟩ toward ℱ୆୐୘.  
2) Run Πେ୦୩୔୪୬

௧  for the previously opened ⟨𝑥ଵ⟩, … ⟨𝑥௧⟩. 
3) Run Πେ୦୩୉୬ୡ

௠  for {⟨𝑧௞⟩}௞∈{௠}. If any check fails, reply Reject. Or reply Accept. 

Figure 2. Π୓୬୪୧୬ୣ: Protocol for the online phase (Part 1). 
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correctness using an RO 𝒵 (cf. Sec 3.5.3). If the check fails, the process will be aborted here. If 𝑐௝ 
is correct, 𝑃் opens the global secret key, and all computing parties release the plaintext shares 
𝛼௜,௝ . If 𝑃் gives the correct key, or the plaintexts are correct, the result will be known to everyone. 
Otherwise 𝑃் or malicious parties that give the corrupted key, ciphertexts, or plaintexts will be 
identified. 

The security of Π୓୬୪୧୬ୣ is proven in the UC framework by the following theorem. 

Theorem 3 (Online Security): In the (ℱ୓୤୤୪୧୬ୣ ,ℱ୆୪୲ ,ℱେ୭୫, ℱ୏ୋୈ )-hybrid model with random 
oracles 𝒦 and 𝒵 , the protocol Π୓୬୪୧୬ୣ  implements ℱ୓୬୪୧୬ୣ with computational security against 
any static adversary corrupting all parties except one computing party and the auditor 𝑃஺ if the 
DLP is hard in the group 𝔾. 

Next, we introduce present how to check the correlation without opening the cipher, and how to 
check the opened plain shares used in Multiply. 

3.3.1 Check and Audit for Encoded Shares 

In the online phase, we use a purely information-theoretic check as the first step of verification. 
The advantage of checking the correlation before the audit is lower complexity for optimistic 
models. Moreover, since the correctness of shares is eventually verified by the audit, we will not 
identify the cheater that corrupts the correlation check. This keeps the design simple. 

Correlation of Shares. MAC check in SPDZ guarantees that the correct secret can be recovered 
from the sum of opened shares. This is weaker in sense of security, because it does not guarantee 
the correctness of each share. However, MUSS provides a stronger security: the check using the 
correlation of MUSS shares, that is ∑ 𝛼௜

௡
௜ୀଵ 𝑥௜  =  ∑ 𝑥෤௜

௡
௜ୀଵ ,  guarantees that all parties have the 

correct share values except probability 𝑜(1/𝑞) . Let us formally define the following property. 

Theorem 4 (MUSS Correlation): Let 𝔽 be a field of order p and [𝑥] be the MUSS share of  𝑥. If 
the shares 𝑥෤௜ , 𝑥௜ , and 𝛼௜௝  were opened correctly, the MUSS correlation will hold, which is 
∑ 𝛼௜

௡
௜ୀଵ 𝑥௜  =  ∑ 𝑥෤௜

௡
௜ୀଵ . Assume that at least one server is honest, if any server cheats on share 

values, the MUSS correlation will not hold except probability 𝑜(1/𝑞). 

Audit: On the input ൫𝐀𝐮𝐝𝐢𝐭, {𝑖𝑑(𝑧௞)}௞∈{௠}൯ from 𝑃஺. 
1) Run Π୅୳ୢ୧୲ for ⟨𝑥ଵ⟩, … ⟨𝑥௧⟩ if Πେ୦୩୔୪୬

௧  failed. Run Π୅୳ୢ୧୲ for {⟨𝑧௞⟩}௞∈{௠} if Πେ୦୩୉୬ୡ
௠  failed 

in Output.  
2) If it passes, 𝑃஺ replies Accept. Or it identifies cheaters and outputs (⟘, ℒ௣).   Stop. 

Open: On the input (𝐎𝐩𝐞𝐧) from all parties. Given an RO 𝒵 to verify ZKP. Set a flag 
Cheat ← ⟘. 

1) 𝑃௝  broadcasts 𝑐௝  and ZKP ζ௝  for all other 𝑃௜  and 𝑃஺  to check, for 𝑖 ∈ {𝑛}\𝑗 . If it passes, 
replies Accept. Or 𝑃஺ identifies cheaters and outputs (⟘, ℒ௣), stop. 

2) 𝑃் broadcasts 𝑠𝑘𝑜, and 𝑃௝  opens 𝜶௝ , 𝛽௝ , and 𝑐௝ toward ℱ୆୐୘. All parties check if 𝜶௝ and 𝛽௝  
can correctly open 𝑑௝. If it fails, add 𝑃௝  to ℒ௞. 

3) All parties check if 𝑠𝑘𝑜 can decrypts 𝑐௝ correctly. If it fails, 𝑃஺ set Cheat ← ⊤. 
4) The output depends on the following conditions: 

4.1. If Cheat = ⟘, reply (𝒛, ℒ௞) to all parties.  
4.2. If Cheat = ⊤ and |𝐿௞| > 0, reply (⟘, {ℒ௞ , 𝑃்}) to all parties. 
4.3. If Cheat = ⊤ and |𝐿௞| = 0, reply (𝒛, 𝑃்) to all parties. 

 
Figure 3. Π୓୬୪୧୬ୣ: Protocol for the online phase (Part 2). 
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Proof:  The adversary has no information about 𝛼௜  for all 𝑖 . Consequently, the probability of 
successful cheating is 1/𝑞 such that the correlation is valid by guessing 𝛼௜ and setting 𝑥෤௜ ← 𝑥෤௜

ᇱ and 
then 𝑥௜ ← 𝑥௜+(𝑥෤௜

ᇱ − 𝑥෤௜)/𝛼௜ with 𝑥෤௜
ᇱ ≠ 𝑥෤௜. By setting 𝑥௜ ← 𝑥௜

ᇱ with 𝑥௜ ≠ 𝑥௜
ᇱ and then 𝑥෤௜ ← 𝑥෤௜+(𝑥௜

ᇱ −
𝑥௜) ∙ 𝛼௜, the probability of successful cheating is also 1/𝑞.                                                                    □ 

The MUSS correlation can be used to verify the opened shares, and thus we call this “correlation 
check” and use it as the first step of the delivery, playing the same role of MAC in [5] as an effective 
way to verify the output. The correlation check protocol Πେ୦୩୉୬ୡ

஢  for the published encoded share 

is summarized in Figure 4 which keeps the share 𝑥௜
(௞) and cipher key 𝛼௜ private. The protocol is 

designed to verify σ shares simultaneously by using a random vector 𝒘. The correctness and 
soundness are stated as in following lemma. 

Lemma 1 (Correlation Check for Encoded Shares): The protocol Πେ୦୩୉୬ୡ
σ  is correct, i.e. it accepts 

if the encoded shares ቀ𝑧௜
(௞)

, 𝑟௜
(௞)

ቁ for all  𝑖 ∈ {n} and 𝑘 ∈ {σ} are correctly computed as defined in 

Def. 2. Moreover, it is sound, i.e. it rejects except with probability 𝑜(1/𝑞) in case at least one 

ቀ𝑧௜
(௞)

, 𝑟௜
(௞)

ቁ is not correctly computed, or any server deviates from the protocol. 

If Πେ୦୩୉୬ୡ
஢  passes, the encoded shares ቀ𝑧௜

(௞)
, 𝑟௜

(௞)
ቁ are verified, and 𝒛 is ready to be recovered once 

the key 𝜶 is opened. If it returns Reject, we are not sure if the encoded shares are incorrect, some 
parties lied on the check outcome, or both happen, so in Audit 𝑃୅ needs to verify the expected 
commitments to find out the cause. The audit protocol is demonstrated by Π୅୳ୢ୧୲ in Figure 5. If the 
audit passes, the encoded shares are verified, the protocol still goes to output delivery. If both the 
check and audit fail, the encoded shares are considered incorrect, and the malicious parties that 
corrupt the output will be identified in the audit. The audit protocol can be accelerated by the 
technique in [3]. 

Not only the encoded shares but also the plain shares opened for multiplication need to go for the 
audit, if they fail the correlation check. In the online protocol, all shares that need audit are taken 
care of in one stage, such that batch processing can give additional efficiency improvement. The 
check of plain shares is more complicated than that of encoded shares and will be described in the 
next section.  

Πେ୦୩୉୬ୡ
σ  

Given 𝑧௜
(௞) and 𝑟௜

(௞) from ℱ୆୐୘ for 𝑖 ∈ {n}, 𝑘 ∈ {σ}. Set id(𝐳)={id(𝑧(௞))}௞∈{஢}. 

Check Encoded Shares: On input (ChkEnc, id(𝐳), σ) from all parties. 

1) The parties use ℱୖ୬ୢ to publicly sample a vector 𝒘
$

← 𝔽஢. 

2) Each 𝑃௝ ∈ 𝑃 publicly computes 𝑧௜
𝒘 = ∑ 𝑧௜

(௞)
∙ 𝑤௞

஢
௞ୀଵ  and 𝑟௜

𝒘 = ∑ 𝑟௜
(௞)

∙ 𝑤௞
஢
௞ୀଵ  for each 

𝑗 ∈ {n} and sends toward ℱ୆୐୘. 

3) Each 𝑃௝ ∈ 𝑃 privately computes 𝑧̃௝
𝒘 = ∑ 𝑧̃௝

(௞)
∙ 𝑤௞

஢
௞ୀଵ  and 𝑟̃௝

𝒘 = ∑ 𝑟̃௝
(௞)

∙ 𝑤௞
஢
௞ୀଵ . Then it 

computes and 𝜂௜ = ∑ 𝑧௝
𝒘 ∙ 𝛼௝,௜

௡
௝ୀଵ − 𝑧̃௝

𝒘 and 𝜇௜ = ∑ 𝑟௝
𝒘 ∙ 𝛼௝,௜

௡
௝ୀଵ − 𝑟̃௝

𝒘. 

4) Each 𝑃௜ ∈ 𝑃 uses ℱେ୭୫ to commit to 𝜂௜  and 𝜇௜. 
5) Each 𝑃௜ ∈ 𝑃 uses ℱେ୭୫ to open 𝜂௜  and 𝜇௜ to all parties. 
6) All parties compute and output 𝜂 = ∑ 𝜂௜

௡
௜ୀଵ  and 𝜇 = ∑ 𝜇௜

௡
௜ୀଵ . 

7) If η = μ = 0, all parties output Accept. Else output Reject. 

Figure 4. Πେ୦୩୉୬ୡ
σ : Protocol for the correlation check of encoded shares. 
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3.3.2 Check for Plain Shares 

The correlation check protects the computations defined in Def. 2, not including the multiplication, 
because it uses three random values which are obtained from opening the plain shares of ⟨𝜂⟩, ⟨𝜌⟩, 
and ⟨𝑡⟩. We need a correlation check for the opened plain shares, which is described as Πେ୦୩୔୪୬

σ  in 
Figure 6. The approach is similar except using random shares ⟨𝒔⟩ and secret value 𝑣௜ for hiding the 

encoded shares 𝑧௜
(௞)and 𝑟௜

(௞) . Its correctness and soundness are stated in following lemma. If 
Πେ୦୩୔୪୬

σ  fails, the auditor 𝑃୅ will check the commitments in the audit stage. 

Lemma 2 (Correlation Check for Plain Shares): The protocol Πେ୦୩୔୪୬
σ  is correct, i.e. it accepts if 

the plain shares ቀ𝑧̃௜
(௞)

, 𝑟̃௜
(௞)

ቁ for all  𝑖 ∈ {n} and 𝑘 ∈ {σ} are correctly computed as defined in Def. 

2. Moreover, it is sound, i.e. it rejects except with probability 𝑜(1/𝑞)  in case at least one 

(𝑧̃௜
(௞)

, 𝑟̃௜
(௞)

)  is not correctly computed, or any server deviates from the protocol. 

3.4 Fairness and Robustness 

We see that if the encoded shares of random values and triples are statistically indistinguishable 
from the samples from uniform distribution, and then those of the immediate values and final 
results have the same property. This implies fairness property. 
Proposition 1 (Fairness): The protocol Π୓୬୪୧୬ୣ has public accountability and fairness, that is, the 
malicious parties know the result only if the honest ones know. If the TTP 𝑃் is malicious and 
colluding with other adversarial parties, Π୓୬୪୧୬ୣ still has public accountability in the hybrid model 
with  ℱ୓୤୤୪୧୬ୣ, ℱୖ୬ୢ, ℱେ୭୫, ℱ୆୪୲, 𝒵, and 𝒦, if one computing party and 𝑃஺ are honest. 

Remark 1: Until Open of Π୓୬୪୧୬ୣ, 𝑃் has no information of the output result, since any set of n −
1  shares are indistinguishable to samples from uniform distribution. The adversary gains no 
advantage from the existence of malicious 𝑃். During the Open stage of Π୓୬୪୧୬ୣ, by providing an 
incorrect key, 𝑃் is only able to prevent the output delivery and cannot modify the output. If 𝑃்  is 

Π୅୳ୢ୧୲ 

With published 𝑧௜  and 𝑟௜ from each 𝑃௜ . Set 𝐿 ← {}. 

1) Compute Commitments:  
We follow the computation gates of the evaluated circuit 𝒞 in the same order as they were 
computed. For any gate, with assigned inputs having 
well-formed commitments 𝜀〈௫〉 and 𝜀〈௬〉 from ℱ୆୐୘. The parties do the following: 
Input: For input 𝑚 and preprocessed random 〈𝑡〉, 〈𝑧〉 = 𝑦 ∙ 〈𝑡〉 with 𝑦 = 𝑚 ∙ 𝑡ିଵ, compute 

𝜀〈௭〉 = ൫𝜀〈௧〉൯
௬

. 
Add: For 〈𝑧〉 = 〈𝑥〉 + 〈𝑦〉, compute the expectancy 𝜀〈௭〉 = 𝜀〈௫〉 × 𝜀〈௬〉. 
Multiply: For 〈𝑧〉 = 〈𝑥〉 × 〈𝑦〉 with the preprocessed triple (〈𝑎〉, 〈𝑏〉, 〈𝑐〉) and random 〈𝑡〉. 
Derive 𝜂, 𝜌, and 𝑡 from 𝜂෤, 𝜌෤௜, and 𝑡̃௜ stored in ℱ୆୐୘. 
a) Compute 𝜀〈ఎ〉 = 𝜀〈௫〉 × (𝜀〈௬〉

ିଵ) and 𝜀〈ఘ〉 = 𝜀〈௬〉 × (𝜀〈௕〉
ିଵ) . 

b) Compute 𝜀〈௭〉 = 𝜀〈௖〉 × ൫𝜀〈௔〉൯
ఘ

× ൫𝜀〈௕〉൯
ఎ

× ൫𝜀〈௧〉൯
ఎఘ൫௧షభ൯

. 
2) 𝑃୅  gets 𝐸(𝑧௜, 𝑟௜)  from 𝜀〈௭〉  and checks if (𝑧௜ , 𝑟௜)  can correctly open it . If not, identify 

cheating 𝑃௜ and set 𝐿 ← 𝑃௜ ∪ 𝐿.  
3) If 𝐿 = {}, 𝑃஺ output Accept. Else output (Reject, 𝐿). 

Figure 5. Π୅୳ୢ୧୲: Sub-protocol for the audit of encoded shares. 
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colluding, the adversary will know the result before the honest parties but cannot force the protocol 
to output wrong results. Besides, if 𝑃்  can be assumed to be honest, we can modify the protocol 
and model such that the global key generation only needs to be invoked once. Furthermore, with 
honest 𝑃், Step 1 of the Open stage can be done in the offline phase. 

Supporting the proof of Theorem 1, we can construct a protocol that securely computes the ideal 
functionality of online phase ℱ୓୬୪୧୬ୣ with guaranteed output delivery in the (ℱ୓୬୪୧୬ୣ, (𝒞, 𝔽, 𝔾))-
hybrid model. Recall for every party 𝐼௜, we assign a default input value 𝑥෤௜ and replace the secret 
input 𝑥௜ if 𝐼௜ is excluded. The rest of proof is trivial, and the protocol is briefly given below: 

 Let 𝒫ଵ = 𝒫 = {1, … , 𝑛}, ℐଵ = ℐ = {1, … , 𝑚}. Let 𝒫௧ and ℐ௧ be the set of computing and 
input parties in the 𝑡-th iteration. 𝒞 is the evaluation function. 

 For 𝑡 = 1 … 𝑛 + 𝑚, 

o All parties in 𝐼 send their inputs to the trusted party executing ℱ୓୬୪୧୬ୣ with 
parameters (𝒞, 𝔽, 𝔾). The party with the lowest index in ℐ௧ simulates all parties in 
ℐ\ℐ௧, using their predetermined default input values 𝑥෤௜. The party with the lowest 
index in 𝒫௧ simulates all parties in 𝒫\𝒫௧. 

o The auditor 𝑃஺  checks whether 𝒚 is a valid output, if so 𝑃஺ outputs 𝒚 and halts. 
Otherwise, all parties receive (⟘, ℒ) as output, where ℒ is an index set of 
corrupted parties. If there exists any 𝑖∗ ∈ ℒ and 𝑖∗ ∈ 𝒫\𝒫௧ (or 𝑖∗ ∈ ℐ\ℐ௧), all 
parties delete 𝑖∗ and add to ℒ the party with the lowest index in 𝒫௧ (or ℐ௧). 

o Set 𝒫௧ାଵ ← 𝒫௧\ℒ if ℒ ⊆ 𝒫௧ (or ℐ௧ାଵ ← ℐ௧\ℒ if ℒ ⊆ ℐ௧). 

 

 

Πେ୦୩୔୪୬
σ  

 𝑧̃௜
(௞) and 𝑟̃௜

(௞) has been opened from each 𝑃௜ and 𝑘 ∈ {σ}. Set 𝐿 ← {} 

Check Plain Shares: On input (ChkPln, id(𝐳), σ) from 𝑃஺.  

1) Each 𝑃௜ ∈ 𝑃 privately sample 𝑣௜

$
← 𝔽. The parties use a new random value ⟨𝒔⟩ =

([𝒔], [𝒕], ε⟨𝒔⟩) and use ℱୖ୬ୢ to publicly sample a vector 𝒘
$

← 𝔽஢. 

2) Each 𝑃௜ ∈ 𝑃 opens ቀ𝑧௜
(௞)

+ 𝑠௜
(௞)

ቁ and ቀ𝑟௜
(௞)

+ 𝑡௜
(௞)

ቁ and computes 𝑧(𝒘) =

∑ 𝑤௞
஢
௞ୀଵ (∑ 𝑧̃௝

(௞)
)௡

௝ୀଵ ,  𝑟(𝒘) = ∑ 𝑤௞
஢
௞ୀଵ (∑ 𝑟̃௝

(௞)
)௡

௝ୀଵ , 𝑥௜
(𝒘)

= ∑ 𝑤௞
஢
௞ୀଵ ቀ𝑧௜

(௞)
+ 𝑠௜

(௞)
ቁ, and 

𝑦௜
(𝒘)

= ∑ 𝑤௞
஢
௞ୀଵ (𝑟௜

(௞)
+ 𝑡௜

(௞)
) and sends them toward ℱ୆୐୘. 

3) Each 𝑃௜ ∈ 𝑃 privately computes 𝑠̃௝
𝒘 = ∑ 𝑠̃௝

(௞)
𝑤௞

஢
௞ୀଵ  and 𝑡̃௝

𝒘 = ∑ 𝑡̃௝
(௞)

𝑤௞
஢
௞ୀଵ , 𝜂௜ =

∑ 𝑥௝
𝒘 ∙ 𝛼௝,௜

௡
௝ୀଵ − 𝑠̃௝

𝒘 − 𝑣௜ ∙ 𝑧(𝒘), and 𝜇௜ = ∑ 𝑦௝
𝒘 ∙ 𝛼௝,௜

௡
௝ୀଵ − 𝑡̃௝

𝒘 − 𝑣௜ ∙ 𝑟(𝒘). 

4) Each 𝑃௜ ∈ 𝑃 uses ℱେ୭୫ to commit to 𝑣௜, 𝜂௜ , and 𝜇௜ . 
5) Each 𝑃௜ ∈ 𝑃 uses ℱେ୭୫ to open 𝑣௜, 𝜂௜, and 𝜇௜ to all parties. 
6) Each party computes and outputs 𝜂 = ∑ 𝜂௜

௡
௜ୀଵ  and 𝜇 = ∑ 𝜇௜

௡
௜ୀଵ . 

7) If 𝜂=𝑧(𝒘)(1 − ∑ 𝑣௜)
௡
௜ୀଵ ,  𝜇 = 𝑟(𝒘)(1 − ∑ 𝑣௜)௡

௜ୀଵ , all parties output Accept. Else output 
Reject. 

Figure 6. Πେ୦୩୔୪୬
σ : Protocol for the correlation check of plain shares. 
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The protocol Π୓୤୤୪୧୬ୣ describes the full offline phase in Figure 7. Here we give a view to integrate 
all ideas that will be discussed later. During Initialize the parties will generate two key pairs to 
encrypt random MUSS ciphers α௜ and the key (𝑔, ℎ) for the commitment scheme. With encrypted 
ciphers, Single uses the procedure Πେ୭୫ୗ୦୰

σ  which generates random MUSS shares, together with 
commitments to the values. For multiplication triples, Πୋୣ୬୘୰୮

σ  computes a product of the two 
random values and output them with commitments in Triples. These sub-protocols can be found 

Π୓୤୤୪୧୬ୣ   
Initialize: On input (Init, 𝜎, 𝔽, 𝔾, 𝒈, ℎ) from all players. This generates encryption keys and 
MUSS ciphers. 
1) The parties use ℱ୏ୋୈ  to generate the key pair (𝑝𝑘𝑑, 𝑠𝑘𝑑), where skd  is shared among 

parties.  
2) The third party 𝑃் use ℱ୏ୋୈ to generate the global key pair (𝑝𝑘𝑜, 𝑠𝑘𝑜) if it has none. Each 

𝑃௝  is given 𝑝𝑘𝑜. 

3) 𝑃௝ samples 𝛼௜,௝

$
← 𝔽 for all 𝑖 ∈ {𝑛}. Set 𝛼௜ = ∑ 𝛼௜,௝௝∈{௡} . 

4) Each 𝑃௝  computes and broadcasts ൳𝟏 ∙ 𝛼௜,௝൷
௣௞ௗ

= 𝖤𝗇𝖼௣௞ௗ(𝟏 ∙ 𝛼௜,௝) with all-one vector 𝟏 ∈

𝔽ఙ to ℱ୆୪୲. 
5) All parties compute ⟦𝟏 ∙ 𝛼௜⟧௣௞ௗ =⊕௝∈{௡} ൳𝟏 ∙ 𝛼௜,௝൷

௣௞ௗ
 for all 𝑖 ∈ {𝑛}. 

6) Each 𝑃௝  commits 𝜶௝ = {𝛼௜,௝}௜∈{௡} with 𝛽௝ ∈ 𝔽 by 𝑑௝ = 𝐸(𝒈,௛)
(௡)

൫𝜶௝ , 𝛽௝൯ toward ℱ୆୐୘.  

7) Each 𝑃௝  computes c௝ = 𝖤𝗇𝖼௣௞௢({𝜶௝ , 𝛽௝}, 𝑢௝)  with 𝑢௝ ∈ 𝔽  and invokes ൫genZKP, 𝑃௝൯  of 
Πେ୔ୖ୞୏

ఙ  to obtain ζ௝ . 
Single: On input (Single, 𝜎, 𝑔, ℎ) from all players. This generates 𝜎  random values for the 
input. 
1) Run ൛〈𝑟(௞)〉ൟ

௞∈{σ}
←  Πେ୭୫ୗ୦୰

σ (⊥). 

2) Output ൛〈𝑟(௞)〉ൟ
௞∈{σ}

. 

Triples: On input (𝐓𝐫𝐢𝐩𝐥𝐞, 𝜎, 𝑔, ℎ)  from all players. This generates 𝜎  triples for the 
multiplication. 
3) Run ൛〈𝑎(௞)〉ൟ

௞∈{σ}
←  Πେ୭୫ୗ୦୰

σ (⊥) and ൛〈𝑏(௞)〉ൟ
௞∈{σ}

←  Πେ୭୫ୗ୦୰
σ (⊥). 

1) Run ൛〈𝑐(௞)〉ൟ
௞∈{σ}

←  Πୋୣ୬୘୰୮
σ . Set 𝑡(௞) = (〈𝑎(௞)〉, 〈𝑏(௞)〉, 〈𝑐(௞)〉) with 𝑐(௞) = 𝑎(௞) ∙ 𝑏(௞) for 

𝑘 ∈ {𝜎}. 
2) Output ൛𝑡(௞)ൟ

௞∈{σ}
. 

Audit: On input (Audit, 𝜎, 𝑔, ℎ) from all parties. This verifies the output from Initialize, Single 
and Triples. 
1) Run Πେ୭୫ୗ୦୰

σ (⊤) for Single and Πେ୭୫ୗ୦୰
3σ (⊤) for Triples. 

2) Run Πେ୦୩୞୏୔
஢  once for Single and Πେ୦୩୞୏୔

஢  three times for Triples. If any of two replies 
Reject, 𝑃஺ requests each 𝑃௜ to open toward ℱ୆୪୲ the share of secret key skd௜ and run the 
following steps. 

1.1. If the first fails, 𝑃஺ requests each 𝑃௜ to open toward ℱ୆୪୲ the share of 〈𝑟௞〉 as well as the 
proofs of commitments and encryptions. 𝑃஺ reads transcripts from ℱ୆୪୲ and verifies to 
identify malicious parties ℳோ . 

1.2. If the second fails, 𝑃஺ requests each 𝑃௜  to open the random pads 𝜿௜௝  and 𝜿෥௜௝ , the share 
of 𝑡௞ as well as the proofs of commitments and encryptions. P୅ reads transcripts from 
ℱ୆୪୲ and verifies to identify malicious parties ℳ் . 

3) If any check fails, P୅ outputs Reject and {ℳோ, ℳ்}. Or 𝑃஺ outputs Accept. 

Figure 7. Π୓୤୤୪୧୬ୣ: Protocol for the offline phase. 
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in Figure 8. If we assume the presence of at least one honest server and that the adversary has a 
static strategy to corrupt the servers, Πେ୔ୖ୞୏

஢  (Figure 9) and Πେ୦୩୞୏୔
஢  (Figure 10) work as the audit 

to ensure that the following properties hold: 

 All commitments of shares have ZKP’s. All ciphertexts and commitments of MUSS ciphers 
have ZKP’s, which are verified in the online phase.  

 The procedure Πେ୔ୖ୞୏
ఙ  was executed such that the ciphertexts of MUSS ciphers were correctly 

encrypted from the plaintexts.   
 The procedure Πେ୦୩୞୏୔

ఙ  was executed such that the generation of shares followed the protocol, 
otherwise the malicious parties that cheat in Single and Triples of Π୓୤୤୪୧୬ୣ were identified. 

Set ⟦∙⟧ ∶= ⟦∙⟧௣௞ௗ, SIMD factor 𝜎. ൳𝛼௝൷ as the encrypted cipher key. Define 𝒖௜ = ቄ𝑢௜
(௞)

ቅ
௞∈{σ}

, 

𝒗௜ = ቄ𝑣௜
(௞)

ቅ
௞∈{σ}

, 𝒂௝ ∙ 𝛼௝ = ቄ𝑎௝
(௞)

∙ 𝛼௝ቅ
௞∈{σ}

,  𝖤(𝒖௜, 𝒗௜) = ቄ𝖤 ቀ𝑢௜
(௞)

, 𝑣௜
(௞)

ቁቅ
௞∈{σ}

 and ⟦𝝁௜⟧ =

ቄቘ𝑢௜
(௞)

቙ቅ
௞∈{σ}

, 𝒖௝ ⊗ ൳𝜶௝൷ = ቄቘ𝑢௜
(௞)

𝛼௝቙ቅ
௞∈{σ}

, 𝒖௝ ⊗ ൳𝒂௝൷ = ቄቘ𝑢௜
(௞)

𝑎௜
(௞)

቙ቅ
௞∈{σ}

, and ൳𝜶௝൷ =

൳𝟏 ∙ 𝛼௝൷ for parallel processing. 

Πେ୭୫ୗ୦୰
σ (𝖿𝗅𝖺𝗀) 

With private share 𝒖௜ and randomness 𝒗௜ from each 𝑃௜. 𝒖௜ = ቄ𝑢௜
(௞)

ቅ
௞∈{σ}

 

1) Execute Πୋୣ୬ୗ୦୰
σ  twice to obtain 𝒖෥௜ and 𝒗෥௜, respectively, for each 𝑃௜. 

2) Each party 𝑃௜  computes 𝖤(𝒖௜, 𝒗௜)  and 𝖤(𝒖෥௜ , 𝒗෥௜)  If 𝖿𝗅𝖺𝗀 =⊥ , open both toward ℱ୆୪୲ . If 
𝖿𝗅𝖺𝗀 = ⊤, only open 𝖤(𝒖௜, 𝒗௜). 

Πୋୣ୬ୗ୦୰
σ  

With private share 𝒖௜ and randomness 𝒗௜ from each 𝑃௜.  

1) Each 𝑃௝ ∈ 𝒫\𝑃ଵ samples 𝒖௜ , 𝒖෥௝

$
← 𝔽ఙ at random and opens ൳𝝁௝൷  =  𝒖௝ ⊗ ൳𝜶௝൷ − 𝒖෥௝.  

2) 𝑃ଵ opens ⟦𝝁ଵ⟧ =  𝒖ଵ ⊗ ⟦𝜶ଵ⟧. All parties compute ⟦𝒖෥ଵ⟧ = ⨁௝∈{௡}൳𝝁௝൷. 
3) All parties call (Decrypt, pk, ⟦𝒖෥ଵ⟧, 𝑃ଵ) for 𝑃ଵ to obtain 𝒖෥ଵ. 

Πୋୣ୬୘୰୮
σ  

With private share ⟨𝒂⟩ and ⟨𝒃⟩. 
1) Each 𝑃௝ ∈ 𝒫 opens ൳𝒂௝ ∙ 𝛼௝൷ = 𝒂௝ ⊗ ൳𝜶௝൷ and ൳𝒂෥௝൷.  

2) Each 𝑃௝ ∈ 𝒫  samples 𝜿௝௜ , 𝜿෥௝௜

$
← 𝔽ఙ  and sends ൳𝜿௝௜ ∙ 𝛼௝൷ = 𝜿௝௜ ⊗ ൳𝜶௝൷  and ൳𝜿෥௝௜൷  toward 

each 𝑃௜ ∈ 𝑃\𝑃௝ . 
3) Each 𝑃௝ ∈ 𝒫 computes 

൳𝒄௝൷  = ቀ𝒃௝ ⊗ ൫⨁௜∈{௡}⟦𝒂௜ ∙ 𝛼௜⟧൯ቁ ⊕ ൫⨁௜∈{௡}\௝൳𝜿௜௝ ∙ 𝛼௜൷൯ ⊕ ൫⨁௜∈{௡}\௝൳−𝜿௝௜ ∙ 𝛼௜൷൯ 

൳𝒄෤௝൷ = ቀ𝒃෩௝ ⊗ ൫⨁௜∈{௡}⟦𝒂෥௜⟧൯ቁ ⊕ ൫⨁௜∈{௡}\௝൳𝜿෥௜௝൷൯ ⊕ ൫∑௜∈{௡}\௝−𝜿෥௝௜൯. 

4) All parties call ൫Decrypt, 𝑝𝑘𝑑, ൳𝒄௝൷, 𝑃௜൯ and (Decrypt, 𝑝𝑘𝑑, ⟦𝒄෤௜⟧, 𝑃௜) for each 𝑃௜ ∈ 𝒫. 

5) Each 𝑃௝ ∈ 𝒫 samples 𝒕௝

$
← 𝔽ఙ. All parties run Πୋୣ୬ୗ୦୰

ఙ  for [𝒕]. 
6) Each 𝑃௜ computes and opens 𝖤(𝒄௜ , 𝒕௜) and 𝖤(𝒄෤௜ , 𝒕෤௜) toward ℱ୆୪୲ for ⟨𝒄⟩ = ൛ൻ𝑐(௞)ൿൟ

௞∈{σ}
. 

Figure 8. Sub-protocols for the generation of MUSS shares. 
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The security proof of offline protocol is provided in the full version of the paper. While we do not 
consider guaranteed output delivery for the offline phase, we compose player-elimination on the 
online phase, that invokes a copy of the offline phase to achieve the robustness. Since information 
is revealed due to the failed audit, everything will need to be generated again for a newly setup 
copy in the next iteration. 

3.5.1 Distributed Encryption 

We have a semi-homomorphic encryption scheme ℋ =  (𝖪𝖦, 𝖤𝗇𝖼, 𝖣𝖾𝖼,⊕,⊗)  with a message 
space 𝔽  and randomness distribution 𝜒 . The ciphertext encrypted by 𝐻  is denoted as ⟦𝑥⟧௣௞

∶= 𝖤𝗇𝖼௣௞(𝑥, 𝑟) with key pair (𝑝𝑘, 𝑠𝑘).  In addition, ℋ has a predicate 
𝐂𝐨𝐫: {0, 1}௡(஛) × {0, 1}௡(஛) × {0, 1}௡(஛) × {0, 1}௡(஛) → {0,1} 

(𝑝𝑘, 𝑐, 𝑥, 𝑟)  →  𝐂𝐨𝐫 (𝑝𝑘, 𝑐, 𝑥, 𝑟),  that maps to 1 if 𝑝𝑘 
$

←  𝖪𝖦(1ఒ), 𝑥 ∈  𝔽, 𝑟 
$

←  𝜒  and c ←
𝖤𝗇𝖼௣௞(𝑥, 𝑟), but otherwise indicates that at least one of these four conditions are not true. The 
operator ⊕ then guarantees that 𝖣𝖾𝖼௦௞(⟦𝑥 + 𝑦⟧௣௞) = 𝖣𝖾𝖼௦௞(⟦𝑥⟧௣௞ ⊕ ⟦𝑦⟧௣௞), whereas we do not 

Πେ୔ୖ୞୏
(௡,ℓ)  

Given the RO 𝒵, the input is 𝛼௜,௝ , 𝑏௜,௝ , 𝑐௝ , 𝑑௝. For each 𝑃௝ ∈ 𝒫, 𝑃௝ᇱ ∈ {𝒫, 𝑃஺}/𝑃௝ .  

Generate ZKP: On input ൫genZKP, 𝑃௝ , 𝑃௝ᇱ൯ from 𝑃௝ for ZKP ζ௝  to prove 𝑅஼௉ோ,௝
(௡,ℓ) . 

1) For each 𝑘 ∈ {𝜆}, 𝑖 ∈ {𝑛} , 𝑃௝ samples 𝑚௜
(௞)

, 𝑝(௞)
$

←  𝔽 and 𝑠௜
(௞)

, 𝑡(௞)
$

←  𝜒. 

2) 𝑃௝  computes 𝑓௜
(௞)

← 𝖤𝗇𝖼௣௞ௗ ቀ𝟏 ∙ 𝑚௜
(௞)

, 𝑠௜
(௞)

ቁ, 𝑔(௞) ← 𝖤𝗇𝖼௣௞௢ ൬൜ቄ𝑚௜
(௞)

ቅ
௜∈{௡}

, 𝑝(௞)ൠ , 𝑡(௞)൰, 

and 𝑣(௞) ← 𝐸(𝒈,௛)
(௡)

൬ቄ𝑚௜
(௞)

ቅ
௜∈{௡}

, 𝑝(௞)൰. 

3) Set 𝒯 = ൜ቄ𝑓௜
(௞)

ቅ
௜∈{௡}

ฮ𝑔(௞)ฮ𝑣(௞)ൠ
௞∈{ఒ}

, 𝑃௝  computes 𝐞 ← 𝒵 ቀ𝒯 ቛ൛𝑏௜,௝ൟ
௜∈{௡}

ฮ𝑐௝ฮ𝑑௝ቁ where 

𝐞 ∈ {0,1}஛.  

4) 𝑃௝  computes 𝛾௜
(௞)

= 𝑚௜
(௞)

+ 𝑒(௞) ∙ 𝛼௜,௝, 𝛿(௞) = 𝑝(௞) + 𝑒(௞) ∙ 𝛽௝ , and 𝜌௜
(௞)

= 𝑠௜
(௞)

+ 𝑒(௞) ∙

𝑟௜,௝ and 𝜎(௞) = 𝑡(௞) + 𝑒(௞) ∙ 𝑢௝ . Output ζ௝ =

൜ቄ𝑓௜
(௞)

, 𝛾௜
(௞)

, 𝜌௜
(௞)

ቅ
௜∈{௡}

, 𝑔(௞), 𝜎(௞), 𝛿(௞), 𝑣(௞)ൠ
௞∈{ఒ}

. 

Verify ZKP: On input ൫verZKP, 𝑃௝ , ζ௝൯ from 𝑃௝ᇱ to verifies ζ௝  to prove 𝑅஼௉ோ,௝
(௡,ℓ) . 

1) 𝑃௝ᇱ computes 𝑓′௜
(௞)

= 𝖤𝗇𝖼௣௞ௗ ቀ𝟏 ∙ 𝛾௜
(௞)

, 𝜌௜
(௞)

ቁ and 𝑔′(௞) =

𝖤𝗇𝖼௣௞௢ ൬൜ቄ𝛾௜
(௞)

ቅ
௜∈{௡}

, 𝛿(௞)ൠ , 𝜎(௞)൰. Set 𝒯′ = ൜ቄ𝑓௜
(௞)

ቅ
௜∈{௡}

ฮ𝑔(௞)ฮ𝑣(௞)ൠ
௞∈{ఒ}

 and 𝐞ᇱ ←

𝒵 ቀ𝒯′ ቛ൛𝑏௜,௝ൟ
௜∈{௡}

ฮ𝑐௝ฮ𝑑௝ቁ. 

2) 𝑃௝ᇱ checks if for each 𝑘 ∈ {𝜆}, 𝑖 ∈ {𝑛} 

𝑓′௜
(௞)

= 𝑓௜
(௞)

⊕ ൫𝑒′(௞) ∙ 𝑏௜,௝൯, 𝑔′(௞) = 𝑔(௞) ⊕ ൫𝑒′(௞) ∙ 𝑐௝൯,   

𝐂𝐨𝐫 ቀ𝑝𝑘𝑑, 𝑓′௜
(௞)

, 𝟏 ∙ 𝛾௜
(௞)

, 𝜌௜
(௞)

ቁ = 1,  

𝐂𝐨𝐫 ൬𝑝𝑘𝑜, 𝑔′(௞), ൜ቄ𝛾௜
(௞)

ቅ
௜∈{௡}

, 𝛿(௞)ൠ , 𝜎(௞)൰ = 1, 

𝐸(𝒈,௛)
(௡)

൬ቄ𝛾௜
(௞)

ቅ
௜∈{௡}

, 𝛿(௞)൰ =  𝑣(௞) ∙ ൫𝑑௝൯
௘ᇱ(ೖ)

 .  

If one fails then 𝑃௝ᇱ output Reject, otherwise Accept. 
 

Figure 9. Πେ୔ୖ୞୏
(୬,ℓ) : Non-interactive ZKP for the relation 𝑅஼௉ோ,௝

(௡,ℓ) . 
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use homomorphic multiplication. The scalar multiplication ⊗  guarantees that 𝖣𝖾𝖼௦௞(𝑦 ⊗
⟦𝑥⟧௣௞) = 𝖣𝖾𝖼௦௞( ⟦𝑥 ∙ 𝑦⟧௣௞). 

In addition, we require the interactive functionality ℱ୏ୋୈ that will be used for the preprocessing. 
The key pair can be securely generated by a key-generation protocol, where the secret key is 
additively shared by all parties. The ciphertext can be jointly decrypted by yielding the plaintext 
publicly from all parties, or providing it to a specific party privately. 

3.5.2 Generation of Multiplicative Ciphers 

The ciphers are jointly generated by the computing parties. The protocol has two key pairs 
(𝑝𝑘𝑑, 𝑠𝑘𝑑)  and (𝑝𝑘𝑜, 𝑠𝑘𝑜) . The first one is obtained using ℱ୏ୋୈ  invoked by all computing 
parties. The second one is given by the external TTP. Henceforth, each party encrypts his share 

twice with 𝑝𝑘𝑑  and 𝑝𝑘𝑜 . With 𝟏 = {1}௜∈{ℓ} , 𝒓௜,௝

$
← 𝔽ℓ , and 𝑢௝

$
← 𝔽  the ciphertext 𝑏௜,௝ = ൳𝟏 ∙

𝛼௜,௝൷
௣௞ௗ

= 𝖤𝗇𝖼௣௞ௗ൫𝟏 ∙ 𝛼௜,௝ , 𝒓௜,௝൯ is broadcasted for the generation of correlated randomness, and 

c௝ = 𝖤𝗇𝖼௣௞௢൫൛𝜶ഥ௝ , 𝛽௝ൟ, 𝑢௝൯ for 𝜶ഥ௝ = {𝛼௜,௝}୧∈{௡} is always held private until the output delivery of 
online phase. The relation between two ciphertexts is built by committing 𝛼௜,௝  toward the bulletin. 
Therefore, we need ZKP to ensure that these encryptions are all derived from the same plaintext. 

For 𝖤(𝒈,௛)
(௡)

൫𝜶ഥ௝ , 𝛽௝൯ = ∏ 𝖤(௚೔,௛)൫𝛼௜,௝ , 𝛽௝൯௡
௜ୀଵ  and 𝜶௝ = {𝛼௜,௝}௜∈{௡}, and the relation is formalized as: 

𝑅஼௉ோ,௝
(௡,ℓ)

= ቊ(𝐬, 𝒂)|𝐬 = ቀ൛𝑏௜,௝ൟ
௜∈{௡}

, 𝑐௝ , 𝑑௝ , 𝑝𝑘𝑑, 𝑝𝑘𝑜ቁ , 𝒂 = ൫𝜶௝, 𝛽௝ , 𝒓௜,௝ , 𝑢௝൯, 𝐂𝐨𝐫൫𝑝𝑘𝑑, 𝑏௜,௝ , ൫𝟏 ∙

𝛼௜,௝൯, 𝑟௜,௝൯ = 1, 𝐂𝐨𝐫൫𝑝𝑘𝑜, 𝑐௝ , ൛𝜶ഥ௝ , 𝛽௝ൟ, 𝑢௝൯ = 1, ൛𝑏௜,௝ൟ
௜∈{௡}

= ቄ൳𝟏 ∙ 𝛼௜,௝൷
௣௞ௗ

ቅ
௜∈{௡}

, c௝ =

𝖤𝗇𝖼௣௞௢൫൛𝜶ഥ௝, 𝛽௝ൟ, 𝑢௝൯, 𝑑௝ = 𝖤(𝒈,௛)
(௡)

൫𝜶ഥ௝ , 𝛽௝൯ቋ. 

Based on [24], the protocol Πେ୔ୖ୞୏
(௡,ℓ)  of ZKP for each pair 𝑃௝ and 𝑃௝ᇱ in 𝒫 is described in Figure 9, 

and we propose that it satisfies the properties as follows.  

The protocol Πେ୔ୖ୞୏
ℓ  is correct due to the homomorphic addition of ℋ  and the commitment 

scheme, because 𝑃௝  outputs transcripts that can be verified by 𝐂𝐨𝐫. Soundness follows due to the 
standard soundness of 𝛴-protocols which allows us to extract a witness.  Since 𝐞 was chosen from 

൛0，1ൟ
஛
, there is negligible probability for a dishonest 𝑃௝ to forge an accepting transcript. Zero-

knowledge follows trivially by assuming the programmable random oracle model of 𝒵 , and 

security of 𝖤𝗇𝖼௣௞௢ and 𝖤(𝒈,௛)
(௡) . 

Proposition 2 (ZKP for MUSS ciphers): The protocol Πେ୔ୖ୞୏
(୬,ℓ)  is a non-interactive zero-knowledge 

proof of knowledge for the relation 𝑅஼௉ோ,௝
(௡,ℓ)  using the programmable RO 𝒵. 

3.5.3 Correlation Check Using Global KEA-ZKP 

Whenever plaintexts are encrypted for cipher keys, and ciphertexts are decrypted for shares, the 
adversary will be able to influence the outcome of the encryption and decryption processes, and 
we hence have to check the output for correctness. Unlike other SPDZ protocols, we will not simply 
prove the correctness of ciphertexts or the relation between the ciphertext and commitment. Instead 
we check the output: KEA-based proof is utilized to prove the existence of committed MUSS 
shares which have the MUSS correlation. It can be proven that given at least one honest party, the 
MUSS correlation holds if and only if the parties follow the sub-protocols Πେ୭୫ୗ୦୰

σ  and Πୋୣ୬୘୰୮
σ . 

Given in Figure 10, the protocol Πେ୦୩୞୏୔
σ  elaborates the check function to verify the commitment 

and will be used to prove the following lemma. 
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Proposition 3 (Correlation check using global ZKP): If DLP and KEA3 assumptions [18] are 
true, the protocol Πେ୦୩୞୏୔

σ  is a non-interactive ZKP of knowledge for the relation 𝑅ெ௎ௌௌ
σ  using 

the programmable RO’s ℛ and 𝒬. 

 𝑅ெ௎ௌௌ
σ = ቊ(𝛆, 𝒘) ቤ𝛆 = ቄ𝛆௜ = ቀε௜

(௞)
, ε෤௜

(௞)
ቁቅ

௜ୀ{n},௞ୀ{σ}

∧ 𝒘 = ቄቀ𝑧௜
(௞)

, 𝑧̃௜
(k)

ቁ , ቀ𝑟௜
(௞)

, 𝑟̃௜
(k)

ቁቅ
௜ୀ{n},௞ୀ{σ}

∧ ቄε௜
(௞)

= 𝖤(௚,௛) ቀ𝑧௜
(௞)

, 𝑟௜
(௞)

ቁ , ε෤௜
(௞)

= 𝖤(௚,௛) ቀ𝑧̃௜
(௞)

, 𝑟̃௜
(௞)

ቁቅ
௜ୀ{n},௞ୀ{σ}

∧ ൜෍ 𝛼௜𝑧௜
(௞)

௡

௜ୀଵ
= ෍ 𝑧̃௜

(௞)
௡

௜ୀଵ
ൠ

௞ୀ{σ}

∧ ൜෍ 𝛼௜𝑟௜
(௞)

௡

௜ୀଵ
= ෍ 𝑟̃௜

(௞)
௡

௜ୀଵ
ൠ

௞ୀ{σ}

ቋ 

Lemma 3 (MUSS correlation of output): Assume that there exists at least one honest party. If all 
parties follow Πେ୭୫ୗ୦୰

σ  and Πୋୣ୬୘୰୮
σ , Πେ୦୩୞୏୔

σ  will accept the output. Otherwise, it will reject 
except a negligible probability. 

The protocol Πେ୦୩୞୏୔
σ  is correct due to the linearity of the commitment scheme and because 𝑃௜ 

only outputs transcripts that satisfy the KEA and 𝑅ெ௎ௌௌ
σ . Soundness follows due to the KEA and 

Figure 10. Πେ୦୩୞୏୔
σ  : Global proof of knowledge of MUSS shares. 

Πେ୦୩୞୏୔
σ  

Given the RO ℛ and 𝒬. The commitment scheme uses keys 𝑔 and ℎ. We want to verify ⟨𝒛⟩ =

൛ൻ𝑧(௞)ൿൟ
௞∈{σ}

= ቀ[𝒛], [𝒓], 𝜺〈𝒛〉 = 𝖤([𝒛], [𝒓])ቁ . Let ⟨𝒖⟩ = ቀ[𝒖], [𝒗], 𝜺〈𝒖〉 = 𝖤([𝒖], [𝒗])ቁ  and 

𝘌(௚,௛) ቀ𝑢෤௜
(௞)

, 𝑣෤௜
(௞)

ቁ be private. Each party 𝑃௜ ∈ 𝒫 has MUSS cipher shares {𝛼௝,௜}௜∈{௡}. 

Check ZKP: On input (ChkZKP, id(𝐳), id(𝐮), 𝑔, ℎ, σ) from all parties.  

1) All parties use ℱୖ୬ୢ to get 𝒘
$

← 𝔽஢. 
2) Each party 𝑃௜ ∈ 𝒫 gets by (𝑔ఉ, ℎఉ) ← 𝒬(𝜺〈𝒛〉, 𝜺〈𝒖〉, 𝑔, ℎ). 

3) Each 𝑃௜ ∈ 𝑃 privately sample 𝑠௜

$
← 𝔽. 

4) Each party 𝑃௜  ∈ 𝒫 computes 

𝑧௜
𝒘 = ∑ 𝑧௜

(௞)
𝑤(௞)

௞∈{ఙ} , 𝑟௜
𝒘 = ∑ 𝑟௜

(௞)
𝑤(௞)

௞∈{ఙ} , similarly 𝑢௜
𝒘 , 𝑣௜

𝒘 , 𝑢෤௜
𝒘 , 𝑣෤௜

𝒘 , 𝑧̃௜
𝒘 ,  and 𝑟̃௜

𝒘 . 
Furthermore, it derives and opens 𝑎௜ = 𝖤(௚,௛)(𝑧௜

𝒘, 𝑟௜
𝒘) , 𝑏௜ = 𝖤(௚,௛)(𝑢௜

𝒘, 𝑣௜
𝒘) , 𝑐௜ =

𝖤(௚,௛)(𝑧̃௜
𝒘, 𝑟̃௜

𝒘), 𝑎௜
ᇱ = 𝖤(௚ഁ,௛ഁ)(𝑧௜

𝒘, 𝑟௜
𝒘), 𝑏௜

ᇱ = 𝖤(௚ഁ ,௛ഁ)(𝑢௜
𝒘 , 𝑣௜

𝒘), and 𝑐௜
ᇱ = 𝖤(௚ഁ,௛ഁ)(𝑧̃௜

𝒘, 𝑟̃௜
𝒘). 

5) 𝑃஺  checks if 𝑎௜ = ∏ ൬𝖤(௚,௛) ቀ𝑧௜
(௞)

, 𝑟௜
(௞)

ቁ൰௞∈{ఙ}

௪(ೖ)

, 𝑏௜ = ∏ ൬𝖤(௚,௛) ቀ𝑢௜
(௞)

, 𝑣௜
(௞)

ቁ൰௞∈{ఙ}

௪(ೖ)

, 

𝑐௜ = ∏ ൬𝖤(௚,௛) ቀ𝑧̃௜
(௞)

, 𝑟̃௜
(௞)

ቁ൰௞∈{ఙ}

௪(ೖ)

. If the checks fail, 𝑃஺ output Reject. Stop. 

6) 𝑃஺ computes 𝛽 ← ℛ(𝜺〈𝒛〉, 𝜺〈𝒖〉, 𝑔, ℎ) and check if 𝑎௜
ᇱ = (𝑎௜)ఉ, 𝑏௜

ᇱ = (𝑏௜)ఉ, and 𝑐௜
ᇱ = (𝑐௜)ఉ. 

If the checks fail, 𝑃஺ output Reject. Stop. 
7) Each party 𝑃௜  ∈ 𝒫  computes 𝑑௜ = 𝖤(௚,௛)(𝑢෤௜

𝒘, 𝑣෤௜
𝒘) , 𝑑௜

ᇱ = 𝖤(௚ഁ,௛ഁ)(𝑢෤௜
𝒘, 𝑣෤௜

𝒘) , and 𝜏௜ =

∏ ൫𝑎௝ ∙ 𝑏௝൯
ఈೕ,೔

൫𝑐௝൯
௦೔

௝∈{௡} /𝑑௜  and 𝜏௜
ᇱ = ∏ ൫𝑎௝

ᇱ ∙ 𝑏௝
ᇱ൯

ఈೕ,೔
൫𝑐௝

ᇱ൯
௦೔

௝∈{௡} /𝑑௜
ᇱ 

8) Each 𝑃௜ ∈ 𝑃 uses ℱେ୭୫ to commit to 𝑠௜ , 𝜏௜  and 𝜏௜
ᇱ. 

9) Each 𝑃௜ ∈ 𝑃  uses ℱେ୭୫  to open 𝑠௜ , 𝜏௜  and 𝜏௜
ᇱ . to all parties. Check if 𝜏௜

ᇱ = (𝜏௜)ఉ . If the 
checks fail, 𝑃஺ output Reject and stop. 

10) Set 𝑠 = ∑ 𝑠௜௜∈{௡} . All parties compute and output 𝜌 = ∏ 𝜏௜௜∈{௡} /(𝑐௜)ଵା௦ .  If 𝜌 = 1 , 
𝑃஺ outputs Accept. Or it outputs Reject. 
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the binding of Pedersen commitment which allows us to extract a witness. Since 𝛼௜,௝, 𝑠௜ , and 𝒘 
were chosen from a large enough space uniformly so it is computationally infeasible for 𝑃௜ to forge 
an accepting transcript. Zero-knowledge follows the DLP assumption in the programmable random 
oracle model ℛ and 𝒬 for the transcript. The simulator is given in the full version of the paper. 
 

 
 
We described a proposed scheme to address the issues of privacy and correctness in multi-party 
computation protocols. The solution introduced a semi-trusted third party as the key manager and 
redesigns the secret-sharing mechanism. The design ensures that the malicious parties cannot know 
the output by causing an abort, and the output delivery is guaranteed by excluding cheaters and 
restarting the protocol. The offline sub-protocols can be audited publicly by verifying zero-
knowledge proofs based on KEA, holding corrupted parties accountable. The security of the 
protocol can be proven in the universal composability framework.  
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