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ABSTRACT 
 

In this paper, we will investigate the role that can play the AI in adopting a Model Based 

System-Engineering (MBSE) tool. The MBSE approach is widely adopted in the development of 

complex systems (real time systems, cyber physical systems, system of systems, etc.) however, in 

the practice, the tools implementing this approach are facing several problems and are far from 

being adopted by system provider. We contend that the integration of AI into the appropriate 

MBSE phase can yield advantageous outcomes. Furthermore, we propose that further 
exploration into the implementation of AI techniques (such as Machine Learning and NLP) in 

MBSE tools is necessary to align with the requirements of stakeholders. 
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1. INTRODUCTION 
 

The INCOSE (International Council on Systems Engineering) defines Systems Engineering as 

“an interdisciplinary approach and means to enable the realization of successful systems. It 
focuses on defining customer needs and required functionality early in the development cycle, 

documenting requirements, then proceeding with design synthesis and system validation while 

considering the complete problem”[1].  
 

Model Based System Engineering (MBSE) has been widely adopted in the development cycle of 

complex systems. Indeed, MBSE allows managing the complexity of the system by developing 

models for each stage in the development cycle (Requirement model, Function model, logical and 
physical models...) as shown in Figure 1 from [2].  

 

This cycle is evolving (from a classical V cycle) to fit the new functional (the capabilities, the 
missions, the operations) and non-functional requirements (the quality attribute such as carbon 

footprint, safety, security, performance…) of the complex system (system of systems (SoS), 

Cyber Physical System (CPS)…). Some studies such as [3] and [4] show the advantage of 
adopting Model Based System Engineering over Document Based System Engineering. This 

study [4] over 700 projects in different countries around the world shows that schedule adherence 

and average project duration are improved by using modelling tools. Only 19% of modelling tool 

users reported projects being behind schedule, compared to 30% of non-users. 
 

http://airccse.org/cscp.html
https://airccse.org/csit/V13N12.html
https://doi.org/10.5121/csit.2023.131202
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Figure 1. Extended V model for an MBSE approach of a Cyber Physical System 
 

One of the MBSE pillars is to promote an automatic transition between the different stages of the 
system development process, from requirements specification through design and implementation 

to validation (Figure 1). Moreover, keeping a traceability link between the different models of the 

system is one of the pillars of an MBSE approach [1]. This will ensure that the final system will 
satisfy the functional and non-functional requirements identified at the highest level of the 

development cycle. 

 

We can easily conclude that providing an MBSE tool to allow companies to take advantages of 
this promising approach is challenging (which modelling language is used to build the models? 

how to ensure traceability between models? how to automate the implementation and the test? 

what about validation and verification?). Some MBSE tools are already used in industries such as 
[5], [6], [7], etc. However, (1) the lack of powerful automation MBSE tools implementing all the 

modelling levels and ensuring traceability for all phases of the MBSE approach as well as (2) the 

social barrier that consider the implementation phase in the development cycle as the centric and 

more important phase, play a crucial role to hinder the adoption of the MBSE approach. 
  

The discipline of AI can be described as the science of mimicking human mental faculties on a 

computer [8]. AI systems include modules that enables the generation of types of learning. For 
instance, Machine Learning (ML) is a type of artificial intelligence technique that makes 

decisions or predictions based on data. Natural Language Processing (NLP) is the branch of AI, 

which enables computers to understand, interpret, and manipulate human languages. In fact, AI 
techniques together with suitable technology have enabled systems to perceive, predict, and act in 

assisting humans in a wide range of applications.  

 

With the emergence of the AI techniques, we can argue that integrating AI in an MBSE tool will 
promote the adoption of this approach.  

 

In the next section, we will present the related works on using AI techniques in a system 
engineering process. The section 3 presents the result of adopting some AI techniques in an 

MBSE tools as well as our implemented approach. Section 4 presents a use case and section 5 a 

discussion followed by a conclusion. 
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2. RELATED WORKS 

 
In [9] the author present the AI augmented system-engineering approach where he tries to map 

some system engineering activities to AI technologies. For example, machine-learning techniques 
[10], [11], [12] as well as ontologies and Knowledge bases (Kbs) [13], [14] can be used in the 

design phase. 

 
In [15] the author propose a recommender system to assist design modelling with UML. The 

system recommends class attributes when constructing UML class diagrams. Commonly used 

recommendation techniques include collaborative filtering (CF) and knowledge-based (KB). 
Although a recommender system can assist the designer and enhance the quality of the produced 

UML class diagram, it can indeed clutter up the existing Modelling tool that already suffer from a 

cumbersome multi views IHM (semantic view, graphical view, properties view…). 

 
The work presented in this paper [16] aims at fostering model-driven engineering at enterprise 

scale, by contributing to a next generation of cognitive model-based engineering tools and this by 

proposing a generic LSTM neural network architecture to infer heterogeneous model 
transformations, mainly the code generation from the design. However, despite the limitations 

already mentioned in the same paper: (the lack of datasets to train the ANN, the ANNs are unable 

to perform operations with values and evaluation of expressions), we argue that the automatic 

generation of the code from the system design is not the main functionality that a stakeholder will 
use when adopting an MBSE tool.  

 

In fact, only structure part of the code is generated from structural models. Behaviours are best 
coded directly in 3rd generation languages and are not generated from the design. It is easier for 

the developer and even for designer to write directly the code than building an activity diagram or 

a state machine diagram and then generate the same code from it. Authors in this paper [17] 
propose to delete the code generation step in the MBSE approach and directly compile UML 

models since the code generation prevents some footprint code optimizations that is relevant for 

constrained-embedded systems. 

 
In this paper [18] an evaluation of NLP techniques for requirements traceability is presented, the 

authors conclude that NLP is likely not a practical approach to requirements traceability. In fact, 

for this study, the amount of time needed to resolve the false positives may be greater than the 
time spent conducting the process without automated tools in the first place. In the case of this 

study, the number of false positives requiring human review rendered histogram distance 

counterproductive, involving more work to manually resolve than to manually establish traces 
without the use of automatic tools. 

 

In the next section, we will present how the use of the NLP techniques to generate Design model 

from the requirements (first and second step of the V cycle of an MBSE approach) can be 
beneficial to the MBSE tool user.  

 

3. AI TECHNIQUES TO MANAGE REQUIREMENTS AND DERIVE SYSTEM 

DESIGN 

 
In the previous section, we presented related works that rely on adding AI techniques in different 

phases of the MBSE approach to enhance the adoption of this approach using more performant 

MBSE tools to produce more performant and reliable systems.  
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Figure 2. A possible view of an extended MBSE process with IA techniques 

 
Figure 2 presents a classical V cycle of an MBSE approach extended with some AI techniques. 

We believe according to our experience in using and developing MBSE tools, and taking into 

account the feedback of the industrial stakeholders about the use of MBSE tools, that embedding 
the AI techniques (NLP and ML) to manage the requirements and automatically generating the 

first level design of the system is the most interesting way to enhance the adoption of the MBSE 

tool.  

 
This section is organized as follow: the first subsection (section 3.1) introduces the approach and 

its advantages and drawbacks. The second subsection (section 3.2) presents the implementation 

and some specific NLP and ML techniques. 
 

3.1. Approach definition 

 
The first step in the development cycle of a complex system is the specification of the 

requirements (Figure 2). However, for complex systems, the number of requirements is 
exponentially increasing due to the increasing number of stakeholders involved in the process 

(mainly for CPS). This exponential growth in the number of requirements hinders the efficient 

management and the understanding of the gathered requirements and consequently, it hinders the 

construction of high quality systems. Requirements elicitation has a significant impact on 
information systems quality and success, as the errors introduced at the beginning stages of 

development are the hardest and most expensive to correct [19]. 

 

Hence, the exponential growth of the number of requirements raises difficulties in managing 

manually the requirements and having a clear view of the expectation and scope of the system to 

be designed. Here, lies the importance of adopting graphical models as they ensure having a clear 

view of the expectation and scope of the system to be designed [20]. In fact, adopting models 

helps to represent and communicate what is important among stakeholders, keep track of the 

gathered requirement throughout the project, and helps developers deal with the complexity of 

the solution being developed. Additionally, with the shift to Agile development, requirements are 

continuously changing, which makes it difficult to capture all requirements for a non-trivial 

system before development [21]. It is therefore critical to keep track of the requirements 

throughout the project. Agile software development methods such as Scrum have become 
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widespread in the industry. Several industrial and open source tools has emerged to manage not 

only the system development but also all the product lifecycle Management (PLM). 

 

Comparing to MBSE tool, PLM tools have been more successful, because of their user friendly 

web interface (even if some MBSE tools migrating to a new web interface like  [5]) and there 

capabilities to manage the entire lifecycle of an application (ALM) or a product (PLM). 

An important factor that help user adopting an ALM tool is the ability to interact with the system 

without learning a new language. For MBSE, the user has to be familiar at least with the 

standards modelling languages like UML [22], SysML [23], etc. For example, for ALM tool that 

implements the well-known and heavy used Scrum Agile approach, the system requirements are 

edited in the tool as user stories. 

  

We identified three challenges to be considered in adopting an MBSE approach to develop 

complex system: 

1) How to help system developer manipulating all the complex system requirements usually 

defined in natural languages? 

2) How to help system developer to keep traceability between the requirements and the 

design of the system?  

3) How to help system developer to follow both Agile and MBSE approaches? 

 

Our approach proposes a solution for each identified problem. (1) Rely on the AI techniques 

(NLP and ML) to manage the complexity and the growing number of requirements. (2) 

Automatically generate the system design from the classified requirements. (3) Integrate both 

services in an ALM tool to follow an agile approach and hide the complexity of modelling 

language for the end user (3). Figure 3 shows the proposed approach. 

 

 
 

Figure 3. The Proposed Approach 
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It is worth to say here that the two first solutions proposed by our approach have been already 
presented in more details in [24]. In this paper, we enhance the approach technically by (1) 

relying on LIMA NLP tooling [25] instead of the NLTK and SpaCy libraries and (2) integrating 

the solution in the Papyrus MBSE tool that imports the requirements from the Tuleap ALM tool 

[26]. 

 

3.2. Technical Implementation 
 

Among Agile engineering practices, user stories are widely adopted [27], involving potential 

stakeholders in the requirement elicitation process by writing their needs in natural language.  

 
A user story is a requirement expressed from the perspective of an end-user. It is a semi-

structured natural language description of requirements. The structure of user stories follows a 

compact template that describes the type of user, what they want and (optionally) why [28]. The 
most used template is as follow:  

 
As a « type of user », I want « goal », [so that « some reason »] 

 
Several NLP techniques can be applied to tune the user stories. In this paper [29], authors gave a 
systematic review of NLP techniques used in the processing, similarity computation and 

clustering of user stories as shown in Table 1. 

 
Table 1. NLP tooling for the treatment of user stories 

 

 
 

In our approach, we have used LIMA to pre-process the user stories and extract the main model 

elements in a UML use case diagram: the Actor, the Use case and the Association between Actor 
and Use case [22]. In general, LIMA is a fast and efficient NLP tool, especially for languages 

other than English (LIMA supports more than 60 languages). NLTK is a user-friendly NLP 

library with a wide range of tools and educational resources. CoreNLP is a scalable NLP library 
with a server-based architecture. In our previous work, we used NLTK library for the 

preprocessing step and Spacy for defining the rules to extract UML elements from already 

clustered requirements.  
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Preprocessing is the first step of the approach in which, the input functional requirements 
expressed in natural language are normalized through several steps like tokenization (the 

decomposition of a sentence into a set of individual words), stop-words removal (the elimination 

of common words), punctuation removal… Figure 4 shows the result of the preprocessing step 

using LIMA.  
 

 
 

Figure 4. LIMA Preprocessing 

 
In fact LIMA allowed us to enhance easily with a simplified syntax the extraction of an Actor and 
the Use Case as shown in the Figure 5: (Actor is referred here as REQ_ANNOUNCER and the 

use case as REQ_GOAL).  

 

With DeepLima [25] the version of LIMA with deep learning techniques, we aim to enhance the 
result of the preprocessing as well as UML element extraction.  

 

 
 

Figure 5. Example of LIMA Rule for extracting Actors and Use Cases 

 
For more details about the Similarity Computation and the Clustering steps, please refer to our 

previous works [24] and [30]. 

 

In the next section, we will presents a case study of the approach using the ALM tool Tuleap and 
the MBSE tool Papyrus.  

 

4. CASE STUDY: TULEAP AND PAPYRUS 

 
Tuleap is an ALM tool that provides a platform for managing software development projects. 

ALM tools facilitate the entire software development process, from project planning and 

requirements gathering to coding, testing, and deployment. 
 

Papyrus is an open source MBSE tool to develop complex system; it offers several views to 

design models according to OMG modelling languages like UML and SysML. 
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As shown in Figure 3, the idea is to: 

- Import or edit the system requirements defined as user stories in a ALM tool (here 

Tuleap will be used as example) 

- Execute several AI techniques to parse and classify the requirements 
- Use Papyrus (in a hidden way from the end user) to generate for free a visual graphical 

representation of the requirements 

 

4.1. Description of the Case Study 

 
We evaluated our approach on the CMS Company case study [24]. This case study involves a 

company developing complex Content Management System (CMS) products for large 

enterprises. 34 user stories are supplied. Figure 6 shows a snippet of the user stories of the CMS 
case study and the UML use case diagram that is automatically generated from this snippet 

thanks to the AI NLP algorithms.  

 

 
  

Figure 6. Snippet of CMS company user stories and the UML Use Case diagram generated from it 

 
Each user story is tracked in the Tuleap tool as a new Artifact (the user story text is copied in the 

Task Title field of each Artifact as shown in the Figure bellow.  
 

 
 

Figure 7. Tuleap IHM to store the user stories 
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All user stories are imported in Papyrus thanks to the available REST API of Tuleap, and then all 
the embedded AI algorithms are executed (LIMA preprocessing, similarity computation, 

clustering and UML elements extraction). After that, Papyrus automatically generate the UML 

use case diagrams from the UML semantic file. The tooling architecture is presented in the 

Figure 8. The Rust programming language is used to launch all NLP algorithms and generate the 
UML use case diagram according to each Cluster. 

 

 

 
Figure 8. The web interface between Papyrus (back end) and Tuleap (front end) 

 

4.2. Evaluation of the approach 

 
In order to evaluate the accuracy of the generated use case model, we specified True Positive 

(TP), False Negative (FN) and False Positive (FP) elements applied to actors, use cases and their 

relationships.  
 

Table 2 summarizes the evaluation of the generated UML use case model in terms of Precision, 

Recall and F-measure (well-known measures in the Information Retrieval (IR) field) [31]. 
 
Table 2. Evaluation of the used IA techniques using Precision, Recall and F-mesure for the UML element 

extraction as well as execution time of all AI algorithms 
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For actors, F-measure value is equal to 100% as we succeeded to extract all the actors. For use 
cases and relationships, F-measure values take high-range (94%) and (88%) respectively. In 

relationships detection, these values are due in particular to inclusion or extension relationships 

between use-cases that are not supported by our approach. The execution time of all IA 

algorithms in this platform is acceptable (35 s for this case study as shown in Table 2). However, 
it increases with the increase of the number of the user stories. 

 

5. DISCUSSION  

 

We are convinced that AI algorithms are of great help for the MBSE approach if they are 
used to verify, validate, analyse, and compare models but not to cognify the MBSE tools that 
already suffer from adoption problems due to the complexity of the modelling language itself and 

the lack of fluidity of the user interface.  Thus, integrating AI in the design phase and the code 

generation phase (Figure 2) is not the priority to enhance MBSE tool adoption: an automatic code 

generation is not heavily used by stakeholders since it is usually a partial step (only the structure 
part of the code is automatically generated).  

 

The presence of AI in some systems can play the opposite role and, contrary to what one might 
think, AI can create a certain reticence for the designer manipulating a cognified tool (with 

embedded chatbot or a recommender system). 

 
We have also noticed that ChatGPT (an example of a now day excessively used AI) [32] reveals 

in some cases a reluctance towards the not always convincing answers of this AI. For example, 

by asking chatGPT to generate a UML use case diagram from a user story, the AI generate a 

diagram that does not respect the semantics of the UML language. We much prefer that the AI 
explain that it has not be trained to answer this kind of question or that it only knows how to 

answer in text mode. This example shows that we cannot always trust what AI produces. Many 

works are investigating the ethics and trust in the AI such as [33]. 
 

Moreover, if integrating AI solutions in an MBSE process of a complex system is beneficial, this 

does not mean that running AI software in the tools implementing this process will be also 
beneficial. In fact, there is usually a huge gap between the theoretical and practical aspect. For 

example, for real time and embedded systems, the constraints on response times and data 

confidentiality lead to a preference for local data processing, as close as possible to equipment 

and sensors, rather than through the Internet. The challenge is not just to embed an AI but also 
rather to embed an AI that consumes computing power, memory space and energy in a device 

that is usually constrained in all these aspects and this without degrading performance. 

 

6. CONCLUSION  
 
In this paper, we presented several works for integrating AI techniques to enhance the adoption 

of the MBSE approach. We argue that integrating AI techniques in the first and second phase of 
the MBSE lifecycle (requirement specification and design generation) can promote the use of an 

MBSE approach to develop complex system. Otherwise, relying on a standalone MBSE tool and 

trying to integrate AI technique in the design phase or the code generation phase can prevent and 
slow down the adoption of such tool. We believe that integrating an MBSE tooling into an ALM 

or PLM tool is beneficial for both MBSE and Application Agile approaches. 
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