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ABSTRACT 
 
Visual search is of great assistance in reseller commerce, especially for non-tech savvy users 

with affinity towards regional languages. Product attributes available in e-commerce have 

potential for building better visual search systems [2, 20, 29]. We design a visual search system 
for reseller commerce using a multi-task learning approach and address challenges like image 

compression, cropping, etc, faced in reseller commerce. Our model consists of three tasks: 

attribute classification, triplet ranking and variational autoencoder (VAE). We introduce an 

offline triplet mining technique which utilizes information from multiple attributes to capture 

relative order within data. This technique displays better performance compared to traditional 

triplet mining [27] baseline. We compare and report incremental gain achieved by our unified 

multi-task model over each individual task separately. The efsfectiveness of our method is 

demonstrated using in-house dataset of images from the Lifestyle business-unit of Flipkart. To 

efficiently retrieve images in production, we use Approximate Nearest Neighbor (ANN) index. 
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1. INTRODUCTION 
 

Reseller commerce in India is a continuously growing multi-billion dollar market, which helps 
resellers utilize social platforms like Facebook and Whatsapp to bring commerce to the Next 500 

Million customers. Resellers influence and assist their customers by curating the right products 

and doing order management, thus building a layer of trust and assistance for users to perform 

online shopping via social platforms. Shopsy is an app by Flipkart that allows resellers to share 
products with ease to their end customers and earn money by enabling commerce. Resellers 

communicate with the end user over social platforms in a way to keep all the Shopsy constructs 

hidden, thus building their business with no intermediary. Therefore, reseller communication 
with the end user does not include any product links, but is done entirely using images and 

written description. 

 
Reseller commerce covers the following use cases: (1) Reseller promotes the products by sharing 

the images or description of the product with their end-user. The user then shows interest in 

buying a specific product and shares back the product image. (2) Reseller wants to check the 

availability of a product that the user found interesting on social media, in the Shopsy catalog. It 
should be noted that images shared by the users with the reseller may be cropped or contain 

additional markings to highlight specific aspects of the product. Images also undergo 

compression while being shared over chat. The reseller may also add their logo on the image to 
promote their business. Over time as the reseller promotes multiple products to multiple users, it 

becomes hard to locate the requested product using textual search. It is difficult to describe visual 
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characteristics of a product using words. Searching products using text tends to surface products 

from head brands and does not guarantee retrieval of the required item. Visual search tackles 
these limitations as it captures the exact visual patterns of the query image and retrieves the best 

matched item. Therefore, we built a visual search system for reseller commerce to handle the 

above mentioned use cases. 

 
In recent years, visual search has been built across many companies including Alibaba’s Pailitao 

[36], Pinterest Flashlight and Lens [13, 34, 35], Google Lens [24], Microsoft’s Visual Search 

[12], etc. These applications demonstrate large scale visual search systems for massive updating 
data. They focus on the quality of recommendations to improve user engagement. Flipkart 

catalog also contains millions of products and our primary aim is to assist the reseller in 

retrieving the exact item. The images in our catalog update upon the introduction of new 

products. Therefore, we design a system that offers high precision and low latency, while 
considering the size of our catalog and the update rate. 

 

In this work, we consider products only in the fashion category, as currently the reseller 
commerce in India is focused on fashion. Recent works in fashion [2, 20, 29] have demonstrated 

the use of product attributes to build high quality visual embeddings using a combination of 

attribute classification and triplet ranking loss. We design a multi-task model that learns from 
three different tasks: attribute-classification, triplet ranking and variational autoencoder. Finally, 

we highlight our production constraints and build an end to end visual search system for our use 

case. 

 
Our key contributions can be summarized as follows: 

 

• We build a visual search system for reseller commerce and highlight challenges in this 
domain like image compression, cropping, scribbling on the image, etc. 

 

• We present a triplet mining technique that uses information from multiple attributes to 
capture relative order within the data. It gives us twice as good performance as the 

traditional triplet mining technique that uses a single label/attribute, which we have used as 

a baseline. 

 
• We build a multi-task model to learn high-quality visual embeddings and attain a 4% 

incremental gain over the best individual task. 

 
• We highlight the business requirements and infrastructure constraints for our reseller 

commerce environment, and demonstrate an end to end visual search system that offers high 

precision and low latency, while considering our catalog size and the data update rate. 

 
We present experiments and choices made for selecting an appropriate Approximate Nearest 

Neighbor (ANN) index for our production use case. 

 

2. RELATED WORKS 
 

Large scale visual search systems have been built across many companies [12, 13, 24, 33–36], 

demonstrating large scale indexing for massive updating data. There has also been research in 

domain specific image retrieval systems, designed for fashion products [2, 6, 20, 29, 37]. They 
leverage the product attribute information available in the e-commerce domain to build high 

quality visual embeddings. Other works that focus on extracting visual attributes for e-commerce 

[1, 7, 23] demonstrate multi-class classification techniques. Parekh et al. [23] employ a masking 
technique to handle missing attribute values, a practical approach when dealing with products 
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across different verticals. We use the same masking technique and build a multi-task learning 

approach with attribute classification and triplet ranking loss. 

 
Distance metric learning techniques are primarily designed for image retrieval systems, with the 
seminal works like contrastive-loss [5] and triplet-loss [27]. Triplet loss considers a data point as 

anchor and associates it with a positive and a negative data point, and constrains the distance of 

an anchor-positive pair to be smaller than the anchor-negative pair. These methods have evolved 
over time, with early generations like Schroff et al. [27], where they introduced a semi-hard 

negative mining approach. This is an online triplet mining technique which computes useful 

triplets on the fly by sampling hard positive/negatives from within a minibatch. Later, techniques 
evolved to incorporate information beyond a single triplet like Lifted Structured loss [31], N-Pair 

loss [30], etc. These losses associate an anchor point with a single positive and multiple negative 

points, and consider their relative hardness while pushing or pulling these points. The above 

losses consider the rich data-to-data relations and are able to learn fine-grained relations between 
them. However, these losses suffer from high training complexity 𝑂(𝑂2) or 𝑂(𝑂3) where M is 

the number of data points, thus slow convergence. Recent works like Proxy-NCA [21], Proxy 

Anchor [16], etc, resolve the above complexity issue by introducing proxies, thus aiding in faster 
convergence. 

 
In all of the above losses, pair-based or proxy-based, the positives and negatives are chosen based 

on the class label, ie. Positives are from the same class as anchor and negatives from a different 

class. For instance, in the face-recognition setting, to ensure enough positives in each mini-batch, 
Schroff et al. [27] used a mini-batch of 1800 such that around 40 faces are selected per identity 

per minibatch. In the case of proxy based losses, all proxies are part of the model and are kept in 

memory. Since each proxy represents a class, it puts a limit on the number of classes. Applying 
these techniques to e-commerce is challenging, where the possible class labels could be a 

product-id or a product-vertical (eg. t–shirt, shoe, watch, etc). In e-commerce, we have over 

millions of products with only 3–4 images per product, that appear on its product page, and the 

total number of verticals range only in a few hundreds. Choosing the class label as product-id can 
be too restrictive as there are only a few positives to learn from, and in the proxy based setting it 

would lead to millions of proxies. Choosing the product-vertical as class label makes the relation 

between data points too slack and thus we lose the fine grained intra-vertical details (e.g. 
discriminating one t–shirt pattern from another). Thus, applications in the e-commerce domain 

resort to using product attributes for mining the triplets. 

 
Ak et al. and others [2, 6], etc, choose triplets such that the anchor and the positive must have the 

same attribute value whereas the negative is chosen with a different attribute value. For instance, 
given that the anchor is a ‘blue’ color, positive can be any image with ‘blue’ color. Serra at el. 

[29] use images with noisy tags (e.g. red-sweater, red-tshirt) and use similarity score ‘intersection 

over union’ between the tags. They then choose positives that have a similarity score above a 
threshold and negatives with a score below the threshold. Shankar et al. [28] prepare triplets with 

three levels (positive, in-class-negative, out-of-class-negative), and use a ‘basic image similarity 

scorer’ (e.g. pretrained AlexNet, color-histogram, PatternNet) for selecting candidates across 
levels. Drawing ideas from the above works, we define an offline triplet mining technique that 

prepares candidates across multiple levels, such that it captures the relative order within the data.  

 

We sample the candidates under each level based on the percentage of attributes matched. 
 

Another technique that has been used for image retrieval applications is Autoencoder [11, 19]. 

Autoencoder is a type of artificial neural network where the output is the same as the input. It has 
an encoder, a decoder and a bottleneck layer in the middle which captures the latent 
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representation of the data. Thus, the bottleneck layer learns the most important characteristics of 

the image in an unsupervised way. A Variational Autoencoder (VAE) [18] has the same structure 
as an autoencoder but uses a probabilistic approach to learn the latent representation. Unlike an 

autoencoder, VAE learns the disentangled embedding representation [10], i.e. where a single 

latent dimension is affected by only one generative factor and is invariant to changes in other 

factors. Thus, the underlying embedding spaces have a smooth continuous transformation over a 
latent dimension. For instance, a latent dimension which captures color variations, arranges the 

red t-shirt closer to maroon than a green t-shirt. This aspect can be beneficial in retrieving similar 

products along with the exact match. Sarmiento at el. [26] demonstrated the use of VAE for 
similar image retrieval of fashion products. 

 
We seek to combine the benefits of attribute-classification, triplet ranking and VAE to design a 

model for image retrieval. Ren at el. and others [15, 25] have shown performance gain of multi-
task models over individual tasks. Kendall at el. and others [4, 15] have explored ideas on 

balancing multiple loss objectives. In our work, we have taken the naive approach to combining 

multiple loss objectives and computed the linear sum of the normalized losses for each individual 
task. 

 

3. DATASET 
 

3.1. Datasets 
 

In this work, we use the in-house dataset of product-images from the Lifestyle business unit of 
Flipkart. To limit the size of the dataset for training, we consider only products that were ordered 

in the last one year. It has approximately 10+ million images, across 2+ million products 

spanning 250+ product verticals. A product has 3 to 4 images on average that are displayed on its 

product page. Figure-1 shows the distribution of images for top product verticals. 

 

 
 

Figure 1.  Distribution of top-10 product-verticals in the Lifestyle business-unit (1 year). 

 

Percentage denotes the proportion of vertical images in the dataset. The remaining verticals 

constitute 53.79% of the dataset. 

 
We create training, indexing, and querying subsets using the above dataset. These include: 
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• lifestyle_1y: Contain images of all products from Lifestyle business-unit ordered in the last 1 

year. 
 

• lifestyle_1y_train (∼1 million images): Random 1M images sampled from lifestyle_1y 

dataset. We split this into train-test-validation sets in the ratio 85:10:5. 

 

• lifestyle_1y_4v_index (∼3 million images): We use this set to build an index for evaluating 

the image retrieval task, detailed in Section-5.1. The lifestyle_1y dataset was too large to 

conduct multiple runs of experiments across different models. Therefore, we prepare this 
subset with all the images from top 4 verticals. We take ‘all the images’ from these verticals 

(and not exclude images from lifestyle_1y_train) to ensure that it represents the indexed data 

in the final production environment. 
 

• lifestyle_1y_4v_query (100k images): We use this as a test set to query the index, detailed in 

Section-5.1. This dataset contains random 100k images from lifestyle_1y_4v_index dataset 
which are not present in training dataset lifestyle_1y_train. The images in this dataset are 

augmented using augmentations described in Section-3.3. 

 

3.2. Product Attributes 
 

For each image in the dataset, we assign a total of 12 attributes of its associated product. These 
are used for attribute classification tasks detailed in Section-4.1.2. We have chosen 8 product-

aspect attributes and 4 product-taxonomy attributes. There may be missing values for some of the 

product attributes, e.g. a shoe will have no value for an attribute sleeve-length. This is a common 
scenario when we deal with products across different verticals. Detailed list of attributes and their 

sample values are shown in Table-1. 

 
Table 1.  Product Attributes (for the training data of 1M images) 

 

Attribute Name Type Total 

Values 

Sample Values 

analytic_category taxonomy 29 WomenWesternCore, WomenEthnicCore, etc 

analytic_sub_category taxonomy 77 WesternWear, MensTShirt, Watch, etc 

cms_vertical taxonomy 147 shoe, sari, t_shirt, watch, shirt, etc 

analytic_vertical taxonomy 300 WomenSari, MensRoundAndOthersTShirt, etc 

color aspect 33 Black, Multicolor, Blue, White, etc 

ideal_for aspect 11 Women, Men, Men & Women, Girls, Boys, etc 

material aspect 27 Polyester, PU, Genuine Leather, etc 

occasion aspect 26 Casual, Sports, Party & Festive, Formal, etc 

outer_material aspect 23 Synthetic, Mesh, Synthetic Leather, etc 

pattern aspect 39 Solid, Printed, Self Design, Embroidered, etc 

sleeve aspect 20 Full Sleeve, Half Sleeve, Short Sleeve, etc 

type aspect 328 Round Neck, Analog, Straight, Fashion, etc 
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3.3. Image Preprocessing 
 
We apply following augmentations to the images: 

 

• cropping (random 180 × 180 crops on 224 × 224 image) 
• color-augmentation (gray-scale, saturation, brightness) 

• horizontal-flip 

• rotation (0 to 90 degrees) 
• overlay a 80 × 80 logo on top of 224 × 224 image 

• jpeg-compression (quality: 20–50) 

 

These are done to handle the image modifications introduced while sharing images over chat, 
with respect to the reseller use cases (Section-1). We also consider the possibilities of other 

augmentations that may happen in the photo editor like horizontal-flip, rotation, changes in 

brightness, saturation. 
 

3.4. Triplet Generation 

 
We prepare triplets of images to learn the distance metric using triplet-loss, described in Section-

4.1.3. Product-aspect attributes and product-vertical information are used to sample effective 

triplets to account for relative order in the data. We preprocess the dataset and prepare four 
candidate-levels for each anchor image, where each level contains a list of images: 

 

• Level-0: list of images belonging to the same product as that of the anchor image. 
• Level-1: list of images belonging to products from the same vertical as anchor image, and 

greater than 80% product-aspect attribute match with the product in anchor image. 

• Level-2: list of images belonging to products from the same vertical as anchor image, and 

less than 80% product-aspect attribute match with the product in anchor image. 
• Level-3: list of images belonging to products from a different vertical than that of anchor 

image. 

 
To limit the complexity of the above process, random sampling is used and the size of the list in 

each level is limited to 10 (chosen based on training complexity and number of epochs). 

 

During training, first, an anchor-image is randomly sampled from the dataset to generate an 
image-triplet. A candidate positive image is then sampled by first randomly choosing a level out 

of 0,1,2 and then randomly choosing an image from the list of images in that level. To generate a 

negative image, we select the next consecutive level to that of the positively chosen level, and 
then randomly choose an image from the list of images in that level. For instance, given an 

anchor image, we sample a positive from level-1 and the negative from the consecutive level-2. 

We apply augmentations (Section-3.3) to only the anchor image, and no augmentation is applied 
to the positive and negative images. 

 

3.5. Training Data 

 

For multi-task learning, we sample data by first choosing an image, and then club together 

corresponding product-attributes and image triplets using the process described in above sections. 
Figure-2 shows the combined data prepared for the multi-task model. 
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Figure 2.  Random training samples. 
 

Only the anchor image is augmented which is shown in column AnchorAug. Note the similarity 

of positive and negative images with the anchor image, considering their levels mentioned in 

Section-3.4. Columns on the right represent attributes of the product in the anchor image, −1 
denotes a missing attribute value for that product. 

 

4. METHOD 

 
Our visual search system can be described in two parts: (1) First, a Convolutional Neural 

Network (CNN) is trained to generate embeddings that capture the notion of visual similarity. (2) 

Next, an Approximate Nearest Neighbor (ANN) Index is built to return similar images for the 
given query image embedding. We describe the embedding generation in Section-4.1 and give 

the details of ANN Index in Section-4.2. 

 

4.1. Embedding Generation 

 

4.1.1. Backbone-CNN 
 

A modified version of Resnet50 [9] is used as our backbone CNN model. We concat the output 
of conv-block3 with the final output from conv-block-5 as shown in Figure-3. Our intuition is 

that, out of 5 blocks of convolution, the initial layers learn the fine-grained details (e.g. lines or 

blobs) while the later layers learn more abstract concepts like object class (e.g. shoe, t-shirt). 
Thus, the middle layers tend to capture the interesting aspects that may be able to distinguish 

within the same class of object (e.g. one t-shirt design from the other). 

 
As shown in Figure-3, the Resnet50 takes the input image of size 224 × 224. We use Global 

Average Pooling (GAP) to cast 2D conv maps to 1D. The pooled outputs from conv-block-5 and 

conv-block3 are concatenated to get a 1D vector of length 2560. Further, 3 fully-connected layers 

(dim: 1024, 1024, 2048) are added with batch normalization and relu activation. 
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Figure 3.  Encoder Network. 
 

We have used modified Resnet50 [9], where we concat the output of conv-block-3 with the final 
output from conv-block-5 

 

4.1.2. Attribute Classification Loss 
 

We use the embeddings generated by the above model to predict the product attributes. Thus, 

images with common product attributes will tend to have embedding vectors that are similar to 
each other. Our data contain multiple attributes that span across multiple product categories, thus 

not all attributes of a product are assigned values (e.g. sleeve-length is not applicable for shoes). 

To handle the missing values, we use the masking technique as mentioned in [23], where they 

mask the loss for the attributes with missing value. The model design for Attribute Classification 
task is shown in Figure-4. 

 

 
 

Figure 4.  Multi-Task Model 
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For each attribute, we use multi-class prediction with a single label. 12 product attributes are used 

as described in Section-3.2. For each attribute branch, the embedding vector is passed to a 
dropout layer followed by a fully-connected layer with softmax activation. Then, categorical 

cross-entropy is used to compute loss for each attribute. Here, we mask the loss for an attribute 

with missing value. Finally, the loss across all attributes is averaged to compute the per sample 

loss for the attribute-classification task, which is given by: 
 

 
 

 
 

4.1.3. Triplet Loss 
 

In this task, we aim to learn the relative order in the data points by using a distance metric. We 
consider a triplet of images, which are sampled such that the anchor image is more similar to a 

positive image than a negative image (Section-3.4). Then the embedding vector is learnt for each 

image, such that the distance between anchor-positive is less than the distance between anchor-
negative, in the underlying embedding space. The embedding vectors are L2-normalized, which 

ensures that the embedding vectors are mapped to the surface of a n-dimensional hypersphere of 

radius 1. This enables us to use the euclidean distance as the similarity measure between the two 
vectors, since the euclidean distance over the surface of the unit hypersphere is bound between 0 

to 2. We then compute the distance between anchor-positive and anchor-negative, which is then 

passed to the triplet-loss [27]. 

 
During the implementation, we take a triplet of images prepared in Section-3.4, and pass each of 

the images through the encoder-network, as shown in the Figure-4. The weights of the encoder-

network are shared across the three paths. L2-normalization is then applied to the mean-𝑂 layer 
output of the encoder-network. These L2-normalized image embeddings are used to calculate the 

squared euclidean distance. The model finally outputs two distances, i.e. distance between 

anchor-positive and anchor-negative, which are fed to a Hinge Loss function. The final loss from 

triplet task is given by: 
 

 
 

where a, p, n are the embedding vectors of anchor, positive and negative images respectively. The 
function 𝑂 (.) is the squared euclidean distance. M is the margin, and [.]+ is the hinge function. 

We have used a margin of 0.2 (considering that squared euclidean distance ranges between 0 to 4 

on the surface of n-dim hypersphere). 
 

We compare our triplet mining approach with triplet semi-hard mining technique [27] as the 

baseline. The semi-hard technique uses cms_vertical as the class label and samples the positives 
and negatives from within a mini-batch (size: 256), i.e. positives are chosen from the same class 

as the anchor and negatives from a different class. 
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4.1.4. VAE Loss 

 

In a variational autoencoder, there is an encoder, a decoder and a latent bottleneck layer in the 

middle. VAEs ensure latent embedding layer is normally distributed by using a new layer with 

parameters mean 𝑂 and standard deviation 𝑂 of a normal distribution 𝑂 (𝑂, 𝑂2). During 
optimization, the normal distribution 𝑂 (𝑂, 𝑂2) is forced to be as close as possible to reference 

standard normal distribution 𝑂 (0, 1) using Kullback-Leibler (KL-divergence). In the process of 

reconstruction, the latent bottleneck layer learns the salient features of the image whilst the KL-
divergence ensures the disentanglement [10] within the learnt embedding space. Thus, 

independent latent units become sensitive to latent factors such as color, pattern, object-shape. 

And the embeddings learn a smooth continuous transformation over the values of these latent 

factors. For instance, all the t-shirts could lie in one dimension with gradual transition in their 
color. Our intuition is that this would cause the images in the embedding space to be arranged 

such that images with similar looking attributes lie near each other with gradual transition in the 

attribute value. Therefore, when the images are retrieved using nearest-neighbor algorithm, they 
are ordered with exact match followed by only a slight variation in the object characteristics. 

 

Our model design for variational autoencoder is shown in Figure-4. Here, the encoder-network 
outputs the mean(𝑂) and log variance(log 𝑂) for a given input image. It is followed by a 

sampling layer which returns 𝑂 = 𝑂 + 𝑂2·𝑂, 𝑂 ∼ 𝑂 (0, 1). The latent embedding is then L2-

normalized, because downstream ANN indices work well if the vectors are L2-normalized. This 

is then passed to decoder-CNN. Our decoder-CNN architecture uses transposed-convolutions 

with batch-normalization and relu activations. The last layer uses sigmoid activation to output the 

pixel values of the reconstructed image. We have used the approach from [22] to design the 
kernels for our decoder-CNN. This helps to reduce the checkerboard artifacts that appear in the 

reconstructed image. The end to end model takes an augmented image (Section-3.3) as input, and 

it outputs the reconstructed image of exactly the same dimensions as the input image. 
 

The loss objective for VAE-Task is two fold. (1) For the reconstruction loss, we use binary cross-

entropy [17] between the original non-augmented input image and the reconstructed output 
image. (2) The KL-divergence loss [32] between the encoder distribution 𝑂(𝑂|𝑂) = 𝑂 (𝑂|𝑂(𝑂), 

Σ(𝑂)) 𝑂ℎ𝑂𝑂𝑂 Σ = 𝑂𝑂𝑂𝑂(𝑂2
1 , . . . , 𝑂

2
𝑂 ) and the prior standard normal distribution 𝑂 (0, 1). 

 

 

 
 

 

where BCE is binary cross-entropy, 𝑂, x̂ are the input and the reconstructed images respectively, 
𝑂 = 224 × 224 × 3 is total image dimensions. 𝑂, 𝑂 are the output of mean and variance layers 

respectively as shown in Figure-4, 𝑂 = 2048 is the number of latent dimensions. In practice, we 

output log-variance instead of the variance for numerical stability. 
 

We normalize each of the above loss values across their dimensions, and add them to get the final 

per sample loss for the VAE-Task. 
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4.1.5. Multi Task Loss 
 

Multi-Task learning aims to learn a single embedding representation of the given input image, 

which then outputs multiple values corresponding to different tasks. The overall setup for multi-
task learning is shown in Figure-4. The model predicts multiple outputs against each of the tasks: 

(1) For attribute classification task, it outputs softmax-probabilities of attribute-values against 

each of the 12 product-attributes using the augmented anchor-image embedding. (2) For the 
triplet ranking task, it outputs two distances: distance between, and the distance between. (3) For 

VAE task, it takes the augmented-anchor-image as input, and outputs the reconstructed image 

with the same dimensions as the input image. We add the loss from each of the above tasks to 
construct the final per sample loss: 

 

 
 

4.1.6. Image Embedding 
 

To generate the embedding for a given query image using the above multi-task model, we take 

the output from mean-layer (𝑂) and apply the L2-normalization. 
 

4.2. ANN-Index 
 
The only way to guarantee retrieval of exact nearest neighbors in n-dimensional space is 

exhaustive search, which is not practical to be used at query time in production. Thus, we resort 

to Approximate Nearest Neighbor (ANN) technique, which speeds up the search by 
preprocessing the data into efficient indices. There are many readily available libraries that 

implement ANN Indices e.g. Faiss [14], ScaNN [8], Annoy [3], etc. Our primary aim is to assist 

the reseller in finding the exact item, thus we focus on high precision, followed by a throughput 

(queries-per-second) which ranges in few thousands. The total number of images in our system 
ranges in a few millions, and are updated only upon the introduction of new products in the 

catalog. Based on this business use case, we conducted exhaustive grid-search over multiple 

ANN indices, and found ScaNN [8] and HNSW [14] to work the best for our production use case. 
The detailed results of our experiments are presented in Section-5.3. 

 
Given the embeddings generated in the previous section (Section-4.1.6), we first use PCA to 
reduce the embedding dimensionality from 2048d to 256d. An ANN index is then built using the 

embeddings of all the images in our database. When a user searches using an image, the ANN 

index is queried using the image embedding and the top-k nearest neighbor images are retrieved. 
 

4.3. Implementation 
 
We train our model using a batch-size of 32. Adam(𝑂1 : .9, 𝑂2 : .999) is used as an optimizer 

with a learning-rate of 10−3 for initial 100 epochs and then reduced to 10−5 till convergence. We 

end our training using early-stopping with patience of 10 epochs. Model is trained on a single 
Tesla V100 GPU for a total of 148 epochs. 
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4.4. Evaluation 
 
We evaluate our model on the image retrieval task, and use precision@k to measure the success. 

Precision@k returns the number of relevant results among the top k retrieved items. In 

production, we consider a query as successfully resolved if the exact item is present in the top k 
retrieved items, thus prec@k correctly measures our success. The detailed results are presented in 

Section-5.1. 

 

5. EXPERIMENTS 
 

5.1. Image Retrieval Task 
 

We set up the image-retrieval task such that it replicates the process in our production 

environment. In production, when a user searches using an image, the top-k items are retrieved 
from the ANNindex. We prepare two datasets, index-dataset and query-dataset. The 

lifestyle_1y_4v_index (Section-3.1) is used as an index-dataset which represents the images in 

our production database. The lifestyle_1y_4v_query is used as the query dataset which contains 
the augmented images and represent user queries that we may expect in our live system. 

 
First, we build the ANN index with the index-dataset using the process described in Section-4.2. 
Next, for each image in the querydataset, top-k items are retrieved from the ANN-Index. If the 

query image-id is present in the top-k retrieved items, it is marked as success (1) else as a failure 

(0). Finally, we average over all the samples to compute precision@k. 

 
We build separate models using each of the individual tasks (Attribute Classification, Triplet 

Loss, Triplet Semi-Hard, VAE) and compare it with our combined multi-task model and report 
the incremental gains achieved by multi-task technique. As shown in Figure-5, the unified multi-

task model performs better than the model learnt using each of the individual tasks. Also, we see 

that our triplet mining technique performs twice as better than the online triplet semi-hard mining 
[27] which uses cms_vertical as the class label. In Table-2, we compare the model performance 

for each individual image augmentation and display the results for prec@k=4. We see 4% gain 

on average with the unified multi-task model over the best individual task performance. 

 
Table 2.  Retrieval Score (prec@4) per augmentation-type. For models (T-SH: triplet semi-hard, A: 

attribute-classification, T: triplet-loss, V: VAE, MT: multi-task) 

 

Augmentation T-SH A T V MT 

all_augmentation 0.02 0.58 0.50 0.10 0.64 

compression 0.83 0.97 0.98 0.98 0.97 

crop 0.12 0.85 0.85 0.20 0.89 

hor_flip 0.20 0.91 0.95 0.93 0.95 

no_augmentation 0.98 1.00 1.00 1.00 1.00 

logo_overlay 0.62 0.97 0.98 0.95 0.98 

rotation 0.18 0.89 0.85 0.77 0.93 

average 0.42 0.88 0.87 0.70 0.91 
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Figure 5.  Image retrieval performance of models (T-SH: triplet semi-hard, A: attribute-classification, T: 

triplet-loss, V: VAE, MT: multi-task). 

 

We measure precision@k, where k is the top retrieved images from the ANN index. 

 

5.2. Results of Individual Task 
 

We also present the performance of each individual task within our multi-task model. Table-4 

displays the accuracy for the attribute prediction task against each individual attribute. Our final 
triplet loss is 0.052 where 77.9% of samples are correctly ordered with zero triplet-loss. For the 

VAE task, the final reconstruction loss is 0.477 and KL-divergence loss is 0.013. Sample 

predictions for each task of the multi-task model are shown in Appendix-A. 
 

Table 3.  Attribute Classification Accuracy 

 

Attribute Name Accuracy 

analytic_category 0.828 

analytic_sub_category 0.756 

cms_vertical 0.762 

analytic_vertical 0.646 

color 0.542 

ideal_for 0.852 

material 0.543 

occasion 0.703 

outer_material 0.407 

pattern 0.625 

sleeve 0.697 

type 0.555 
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5.3. Selection of ANN Index 
 
Our goal is to choose the Approximate Nearest Neighbor (ANN) index that best suits our 

business use case, outlined in Section-4.2. Our production environment, detailed in Section-6, 

demands an index that offers high precision, high QPS (queries-per-second), low memory 
footprint and preferably a short build time. Considering these requirements, we experimented 

with different indices (Table3), and found ScaNN [8] and HNSW [14] to be well suited for our 

production use case. We also experimented with quantization techniques like IVF(Inverted File 
Index), PQ(Product Quantization) and SQ(Scalar Quantization), if supported in the index library. 
For this analysis, we build the index using lifestyle_1y_4v_index dataset, and use 
lifestyle_1y_4v_query as the query dataset. We chose to have only crop-augmented images since 

it represents the most common use case in our system. It also provides consistency in the image 

distribution while comparing multiple ANN Indices. We test around 3–4 values of each hyper-
parameter using a grid search, and list the best configuration for each index in the Table-4. All 

indices are constrained to run on a single cpu-core. We can see from Table-4, the top performing 

index(ScaNN, HNSW) experienced no drop in performance compared with exhaustive search 

(FlatL2). Further, the top index offers a QPS of ∼ 1k per cpu core and very modest memory 

footprint (∼ 3GB / 3M images) which perfectly fits our production use case. 

 
Table 4.  ANN Index performance, ordered by precision then QPS(queries per second). The index uses a 

single cpu-core, and was built with a total of 3 million images. 

 

Index Precision@4 QPS Build Time (sec) Size(GB) 

ScaNN 0.87 999.19 79 3.37 

HNSW_Flat 0.87 730.19 313 3.40 

HNSW_SQ 0.87 679.08 565 1.16 

IVF_Flat 0.87 102.28 335 3.01 

IVF_SQ 0.87 63.23 383 0.78 

Annoy 0.87 62.25 2354 6.43 

FlatL2 0.87 1.19 4 2.98 

HNSW_PQ 0.84 1388.29 287 0.61 

HNSW_2Level 0.80 786.88 464 0.52 

 

6. PRODUCTION ENVIRONMENT 
 

Considering the scale of reseller commerce in India and the available product discovery features 

(text search, content landing pages) in Shopsy, we estimate our visual search QPS to range in a 

few thousands during the peak business hours. Since our primary aim is to assist the reseller in 
locating the exact product, we focus on retrieving the images with high precision. Further, to ease 

the implementation process, we want to ensure our index fits on a single node (not distributed), 

thus limiting the memory footprint of the ANN index to be less than ∼ 80GB. The images in our 

system update upon introduction of new products in our catalog, which is not a frequent activity. 

But we prefer a short index build time because it adds convenience to the index updation process. 
Our top ANN index (Table-4) is able to satisfactorily address all the above constraints with 
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minimal infrastructure demands. The embedding generation model (Section-4.1.6) is able to 

process 9 QPS on a CPU core and 14 QPS on a GPU (since this is a single image and not 
batched). Thus, we aim to fulfill the business requirements by scaling the number of nodes (e.g. 5 

CPU instances of 20 cores each, can support around a thousand QPS). Although we solve for a 

number of use cases like cropping, compression, etc, of catalog images, another important use 

case is ‘images in the wild’, i.e. photos our users take with their cameras, which we would like to 
solve before we deploy the entire solution to production. 

 

7. CONCLUSION 
 
In this work, we build an end to end visual search system for reseller commerce, which helps to 

retrieve products more accurately compared to text search. We describe the evolution of distance 

metric learning over time and application of these methods to the e-commerce domain. We 
introduce an offline triplet mining technique which captures relative order within the data. 

 

Comparing our approach with the triplet semi-hard mining technique, which uses product-vertical 
as class label, shows twice as good performance as the latter. This indicates that attribute 

information plays a significant role when mining triplets for e-commerce. Further, we combine 

the benefits of multiple image retrieval approaches using multi-task learning and achieve a 4% 
gain over the best individual learning approach. Finally, we highlight our business requirements 

and production environment constraints, and present the experiments conducted to select an ANN 

index that best suits our use case. 
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A. MULTI-TASK MODEL PREDICTIONS 
 

Sample predictions for each task of the multi-task model are shown in Figure-6. 

 

 
 

Figure 6.  Sample predictions for each task of the multi-task model. 

 

Only the anchor image is augmented which is shown in column AnchorAug. It is followed by 

anchor, positive and negative images sampled using triplet mining technique (Section-3.4). 
Column VAE-Recon shows the reconstructed anchor image (output of the decoder as shown in 

Figure-4). Columns VAEReconLoss and TripletLoss show the loss values of the respective row. 

Columns on the right represent each of the product attributes, and the values are in the format 
<predicted-value>|<ground-truth-value>. The green check highlights that attribute value is 

correctly predicted, while a red cross indicates that the prediction is incorrect. A blank cell 

indicates a missing attribute value for the product. 
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