
David C. Wyld et al. (Eds): SIGEM, MLTEC, SEAPP, ITCON, NATL, FUZZY, CSEA - 2022 

pp. 85-98, 2022. CS & IT - CSCP 2022                                                          DOI: 10.5121/csit.2022.122006 

 
DEEP LEARNING TECHNIQUE TO DENOISE 

ELECTROMYOGRAM ARTIFACTS FROM 

SINGLE-CHANNEL 

ELECTROENCEPHALOGRAM SIGNALS 
 

Muhammad E. H. Chowdhury1, Md Shafayet Hossain2,  

Sakib Mahmud1 and Amith Khandakar1 
 

1Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar  
2Department of Electrical, Electronic and Systems Engineering, Universiti 

Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia  

 

ABSTRACT 
 
The adoption of dependable and robust techniques to remove electromyogram (EMG) artifacts 

from electroencephalogram (EEG) is essential to enable the exact identification of several 

neurological diseases. Even though many classical signal processing-based techniques have 

been used in the past and only a few deep-learning-based models have been proposed very 

recently, it is still a challenge to design an effective technique to eliminate EMG artifacts from 

EEG. In this work, deep learning (DL) techniques have been used to remove EMG artifacts from 

single-channel EEG data by employing four popular 1D convolutional neural network (CNN) 

models for signal synthesis. To train, validate, and test four CNN models, a semi-synthetic 

publicly accessible EEG dataset known as EEGdenoiseNet has been used the performance of 

1D CNN models has been assessed by calculating the relative root mean squared error 

(RRMSE) in both the time and frequency domain, the temporal and spectral percentage 
reduction in EMG artifacts and the average power ratios between five EEG bands to whole 

spectra. The U-Net model outperformed the other three 1D CNN models in most cases in 

removing EMG artifacts from EEG achieving the highest temporal and spectral percentage 

reduction in EMG artifacts (90.01% and 95.49%); the closest average power ratio for theta, 

alpha, beta, and gamma band (0.55701, 0.12904, 0.07516, and 0.01822, respectively) compared 

to ground truth EEG (0.5429; 0.13225; 0.08214; 0.002146; and 0.02146, respectively). It is 

expected from the reported results that the proposed framework can be used for real-time EMG 

artifact reduction from multi-channel EEG data as well. 
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1. INTRODUCTION 
 

An electroencephalogram (EEG) signal is recorded non-invasively at the scalp which represents 

electrical pulses originating from the brain's electrophysiological activity [1]. EEG is important 
for several therapeutic uses and in neurological research. EEG is mostly used to diagnose 

epileptic seizures and Alzheimer's disease in humans [2, 3]. Other applications of EEG include 

drowsiness level measurement [4], detection of human emotions [5], estimation of cognitive 

workload [6], brain-computer interfaces (BCIs) [7], and biometric systems [8]. 

http://airccse.org/cscp.html
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EEG recordings are highly susceptible to physiological noises such as myogenic artifacts [9], 
ocular artifacts [10], cardiac abnormalities [11], and non-physiological disturbances like power 

line noise and motion artifacts [12]. These noises will have a big effect on how the EEG data is 

analyzed, and in the worst cases, they could even lead to a completely wrong clinical diagnosis. 

To reduce artifacts and keep as much of the neural information as possible, an efficient and 
robust framework is vital which can remove EMG artifacts from EEG data. 

 

The Fourier transform or the wavelet transform was commonly used to translate the signal from 
the temporal domain to the spectral domain and then filter out the spectral components that 

correspond to the EMG artifacts. The EMG artifacts-free EEG signal can be obtained using either 

the inverse Fourier transform or the inverse wavelet transform. The use of Wiener filter [13], 
adaptive filter [14], Hilbert-Huang Transformation (HHT) [15], empirical mode decomposition 

(EMD) [16], variational mode decomposition (VMD) [17], independent component analysis 

(ICA) [18], and canonical correlation analysis (CCA) [19] etc. are some other methods for EEG 

denoising. These methods aimed to transform the signal from its original space to a new space 
where the signal and noise can be separated. Some of the major disadvantages of utilizing a 

signal-processing-based algorithm to remove EMG artifacts from EEG recordings are the low 

percentage reduction in EMG artifacts removal, high possibility of removing important neural 
information from EEG by considering artifacts components, poor performance in dynamic 

situations, etc. Extended EMD (EEMD)-ICA and EEMD-CCA [20, 21] are two hybrid 

approaches that were reported to remove EMG artifacts from EEG. Although the integration of 
ICA/CCA along with EMD/EEMD improved the performance to some extent, the underlying 

assumptions remained unclear and requires optimization through trial and error basis. As an 

example, in the EEMD-CCA, the choice of two autocorrelation criteria is experimentally 

determined in diverse circumstances [22]. 
 

The development of novel network topologies and learning methods, as well as the increase in 

computer resources and enormous data processing capacity, have significantly enhanced the 
performance of deep learning (DL) neural networks in recent years. Several technological 

problems, including image processing [23] and natural language processing [24], have been 

effectively solved using DL. The categorization of motor imagery based on EEG [25] and the 

reconstruction of EEG [26] are two notable applications of EEG-related analysis that make use of 
DL methods. 

 

EEG artifacts have also been eliminated using certain well-known deep learning (DL) models, 
including auto-encoder [27], convolutional neural networks (CNNs) [28, 29], and recurrent 

neural networks [29, 30]. In comparison to conventional signal processing-based models, DL 

models have the following two advantages: (i) universality, where a standardized architecture can 
accommodate a variety of artifact removal tasks without the need for manual designs of prior 

assumptions on a particular type of artifacts; and (ii) higher capacity, where deep learning 

enforces a significant performance improvement. As expected, a significant performance boost 

compared to the traditional signal-processing-based methods was reported in these studies yet 
some of the shortcomings of these deep learning-based approaches are : testing the proposed 

models with a partial dataset rather than using the k-fold cross-validation approach, lack of 

generability of the model, room for a further performance boost, smaller number of performance 
metrics for evaluating the DL models, etc which are addressed properly in this study. 

 

The goal of this study is to create an efficient and robust DL model that can clean out EMG 
artifacts from EMG-corrupted EEG data. To denoise EMG artifacts from contaminated EEG 

signals, four different 1D CNN models, namely (i) Feature Pyramid Network, or FPN [31], (ii) 

U-Net [32], (iii) Multi-level Context Gating U-Net (MCGU-Net) [33], and (iv) LinkNet [34] have 

been implemented in this work. The efficacy of the models is then compared by computing 
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several performance metrics, using the publicly available semi-synthetic dataset, EEGdenoiseNet. 
Our main contributions are listed here, briefly: 

 

• The outcomes of our thorough analysis provide a convincing demonstration of the 

effectiveness of 1D CNN models in eliminating EMG artifacts from noisy EEG. 
• The four 1D-CNN models are trained and tested using a five-fold cross-validation method 

and consistent results obtained from each fold ensure the reliability and robustness of the 

proposed framework. 
• After being trained on single-channel, semi-synthetic EEG data, our created framework may 

be utilized to denoise multichannel, real-world EEG data. 

 
The rest of this article is organized as follows: The single-channel EEG dataset, semi-synthetic 

corrupted EEG data creation, and normalization approaches used in this research are described in 

Section 2. The experimental setup and the performance assessment metrics are covered in Section 

3. In Section 4, the performance of the proposed four different cutting-edge 1D CNN 
segmentation networks is quantified, and the findings are thoroughly discussed. The limitations 

of our research are described in Section 5 and finally, a succinct conclusion is presented in 

section 6. 
 

2. MATERIALS AND METHODS 
 

The framework for efficient EEG denoising (removing EMG artifacts from contaminated EEG) 

utilizing 1D-CNN-based segmentation networks is shown in Figure 1 and is self-explanatory. In 
two distinct subsections, the dataset utilized, the semi-synthetic data creation, and the 

normalization processes employed in this work are elaborately explained below:  

 

 
 

Figure 1. A proposed framework to remove EMG artifacts from corrupted EEG signals. 

 

2.1. Dataset Description  
 

The EEGdenoiseNet, a semi-synthetic EEG dataset is used in this study [29]. The noisy EEG and 
equivalent clean EEG provided by EEGdenoiseNet are used for model training and quantitative 

performance assessment. It may be used to assess how well different models generalize in real-

world circumstances. The EEGdenoiseNet dataset includes 4,514 clean EEG signal segments and 
5,598 clean EMG signal segments. Each clean EEG and EMG signal segment is 2 seconds long. 
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Figure 2. Example segments in EEGdenoiseNet dataset. (a) Clean/Ground truth EEG segment, (b) Clean 

EMG segment. 

 

The raw EEG signals were pre-processed with a band-pass filter (1-80 Hz) to remove 
unnecessary high-frequency components of EEG, a notch filter (50 Hz) to remove the powerline 

noises, and re-sampled at 256 Hz by the authors of the dataset [29]. The EEG signals were 

segmented at this stage, with each segment containing 512 data points (2 seconds). It is important 
to note that single-channel EEG signals were used to construct the clean EEG segments. Raw 

face EMG signals were resampled to 512 Hz after being band-pass filtered (bandwidth: 1-120 

Hz) and notch filtered at the power-line frequency (50 Hz). Because the EMG signal is 

concentrated in the high-frequency band, the EMG signals were sampled at 512 Hz instead of 
256 Hz to preserve the high-frequency component of EMG signals. Finally, one-dimensional, 2-

second EMG segments with 1024 data points per segment were generated. Figure 2 depicts one 

clean EEG, and one clean EMG segment for visual illustration. 

 

2.2. Semi-Synthetic Contaminated EEG Data Generation and Normalization 
 
In this study, the clean EEG segments are linearly mixed with EMG segments (Equation 1) to 

produce the semi-synthetic EMG contaminated EEG: 

 

𝑦 = 𝑥 + 𝜆. 𝑛      (1) 

 

where 𝑥 denotes the clean EEG segment/ground truth EEG; 𝑛 is the clean EMG segment (as 

noise), and 𝑦 is the semi-synthetic EMG contaminated EEG segment. The signal-to-noise ratio 
(SNR) of the EMG corrupted EEG signal can be varied by changing the value of the scaling 

factor 𝜆 by solving Equation 2: 

 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔
𝑅𝑀𝑆(𝑥)

𝑅𝑀𝑆(𝜆.𝑛)
     (2) 

 

The root mean square (RMS) can be calculated as follows: 
 

𝑅𝑀𝑆 (𝑧) =  √
1

𝑁
∑ 𝑧𝑖

2𝑁
𝑖=1      (3) 

 

where N is the number of time-domain samples of segment, 𝑧 and 𝑧𝑖 is the 𝑖𝑡ℎ sample point of 

segment, 𝑧. It is apparent from Equation 2 that a smaller 𝜆 corresponds to lesser EMG artifacts 

and hence a lower 𝜆 indicates a higher SNR. Similarly, higher noise level results in poorer SNR. 
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The SNR of an EEG that has been contaminated by EMG artifacts typically ranges from -7dB to 
2dB [35]. 

 

In this work, the linear mixing process enables us to generate a pair of EEG segments (𝑥, 𝑦) 

where the clean/ground truth EEG (𝑥) can be utilized as the outputs and the semi-synthetic EMG 

contaminated EEG (𝑦) as the inputs to train the end-to-end deep learning models. However, in 

this study, (𝑥, 𝑦) pairs are not directly fed to 1D CNN models. Rather, both the EMG 

contaminated EEG and ground truth EEG segments are divided by the standard deviation of the 

EMG contaminated EEG segments (𝜎𝑦) and the resultant (Equation 4) normalized segments 

(𝑥, �̂�) are utilized as inputs and outputs to facilitate the learning procedure of the deep learning 

models. 
 

𝑥 =
𝑥

𝜎𝑦
  ;  �̂� =

𝑦

𝜎𝑦
     (4) 

 
4,514 clean EEG segments and 5,598 EMG segments are mixed while maintaining a particular 

SNR to produce the EMG-contaminated EEG segments. 4,514 clean EMG segments are chosen 

at random from a pool of 5,598 EMG segments to match the number of the EEG signal segments. 
Before combining EEG and EMG segments linearly, all the clean EEG segments are up-sampled 

at 512 Hz to match the sampling frequency of EMG segments. We repeat this procedure ten times 

for ten different SNR levels (-7 dB, -6 dB, -5 dB, -4 dB, -3 dB, -2 dB, -1 dB, 0 dB, 1 dB, and 2 

dB), giving us 45,140 EMG-contaminated EEG segments. Figure 3 shows a randomly selected 
(out of 45,140 segments) EMG contaminated EEG segment. In Figure 3, the corresponding 

ground truth EEG segment is also overlaid to better visualize the impact of EMG contamination 

in EEG. 
 

 
 

Figure 3. Example segments of EMG contaminated EEG and corresponding overlaid ground truth EEG. 

 

3. EXPERIMENT DETAILS 
 
The four 1D CNN models (FPN, U-Net, MCGU-Net, and LinkNet) are trained in an end-to-end 

framework, i.e., the normalized contaminated EEG segments (�̂�) are fed into the neural networks 

as input and corresponding ground truth EEG segments (𝑥) are fed as output so that the DL 

models can develop a nonlinear function that maps the contaminated EEG segments (�̂�) to the 

ground truth EEG segments (𝑥). During training, the mean squared error (MSE) is selected as the 

loss function, ADAM optimizer is applied to optimize the loss function. The learning rate α is set 

to 0.0005. The training set consists of 80% of the data, while the test set consists of the remaining 
20%. The validation set is selected from the 10% of the training set. It is important to note that 

each EEG and EMG segment in the dataset is acquired from a distinct individual, hence the 80-

20-10 splitting results in no data leakage across the train, test, and validation sets. In the Google 
ColabPro environment, the five-fold cross-validation approach is adopted to independently train, 

validate, and test all four networks separately. Two distinct experiments are conducted in this 

research and are explained below: 
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3.1. Experiment A 
 

As previously mentioned, 4,514 EEG segments contaminated with EMG artifacts are created for 

each of the 10 SNR values (-7 dB, -6 dB, -5 dB, -4 dB, -3 dB, -2 dB, -1 dB, 0 dB, 1 dB, and 2 
dB), yielding 45,140 EEG segments overall. The EMG-corrupted EEG and associated ground 

truth EEG segments are used to train each of the four 1D CNN models 10 times for a total of 10 

distinct SNR values, separately. This means that at SNR level -7 dB, 80% of the 4,514 segments 
(3,611) are used as the training set, while the remaining 20% of the 4,514 segments (903) are 

used as the test set. Similarly, segments generated from nine more SNR levels (-6 dB, -5 dB, -4 

dB, -3 dB, -2 dB, -1 dB, 0 dB, 1 dB, and 2 dB) are individually subjected to the same procedure, 

separately. Table 1 consists of the information for train and test sets formation. 
 

Table 1. Formation of train and test sets for experiment B 

 

SNR level 

(in dB) 

Total Number of 

ground truth EEG 

and EMG 

contaminated EEG 

Train set (80% of 

ground truth EEG and 

EMG contaminated 

EEG pairs) 

Test set (20% of 

ground truth EEG and 

EMG contaminated 

EEG pairs) 

-7 4,514 3,611 903 

-6 4,514 3,611 903 

-5 4,514 3,611 903 

-4 4,514 3,611 903 

-3 4,514 3,611 903 

-2 4,514 3,611 903 

-1 4,514 3,611 903 

0 4,514 3,611 903 

+1 4,514 3,611 903 

+2 4,514 3,611 903 

 

To assess the effectiveness of all four DL models in removing EMG noises from contaminated 

EEG, Deep Supervision [36] is applied, and three well-known performance metrics (correlation 

coefficient, relative root mean squared error in the time and frequency domain) are computed. 
 

3.2. Experiment B 
 

In the second experiment, the training and test sets are created in a more controlled setting. For 

each of the ten distinct SNR levels, eighty percent EMG corrupted EEG segments and their 

corresponding ground truth EEG segments are chosen for each of the ten distinct SNR levels 
(3,611 pairs of ground truth EEG and EMG contaminated EEG for each SNR level), and then all 

the 10 × 3,611 pairings are combined to form the training set of 36,110 pairs of ground truth EEG 

and EMG contaminated EEG. The remaining 20% EMG-contaminated EEG segments and their 
corresponding ground truth EEG segments are also formed (903 pairings of ground truth EEG 

and EMG contaminated EEG for each SNR level) and combined (10 × 903) to create the test set 

of 9,030 pairs. Table 2 represents the formation of train and test sets. 
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Table 2. Formation of train and test sets for experiment B 

 

SNR 

level(in 

dB) 

Total Number 

ofGround Truth 

EEG and EMG 

Contaminated 

EEG 

80% of Ground 

Truth EEG and 

EMG 

Contaminated 

EEG 

Total 

Number 

of Pairs 

forTrain 

Set 

20% of Ground 

Truth EEG and 

EMG 

Contaminated 

EEG 

Total 

Number 

of Pairs 

for Test 

Set 

-7 4,514 3,611 

36,110 

903 

9,030 

-6 4,514 3,611 903 

-5 4,514 3,611 903 

-4 4,514 3,611 903 

-3 4,514 3,611 903 

-2 4,514 3,611 903 

-1 4,514 3,611 903 

0 4,514 3,611 903 

+1 4,514 3,611 903 

+2 4,514 3,611 903 

 

In experiment A, DL models are trained and evaluated for certain SNR level segments; as a 
result, they are not capable of performing well if tested with other SNR-level EEG segments. 

This is the main difference between experiments A and B. Since there is no way to determine the 

SNR level of the applied input signal in real-world circumstances, models trained as experiment 
B should be more reliable when evaluated with EMG-contaminated EEG segments having 

different SNR levels. 

 

In experiment B, all four 1D CNN segmentation networks are trained with and without Deep 
supervision [36]. It is found that the deep supervision did not improve the model performance, 

hence we have not reported the results utilizing deep supervision for this experiment. Unlike 

experiment A, the performance of the trained models is quantified using five performance metrics 
(average power ratio between five different EEG bands to the whole spectra, relative root mean 

squared error in the time domain, relative root mean squared error in the frequency domain, the 

temporal percentage reduction in EMG artifacts, and lastly, the spectral percentage reduction in 
EMG artifacts. 

 

3.3. Performance Metrics 
 

It is key to quantify the model's performance to ascertain how well it can predict the signal. In 

addition, identifying and selecting the appropriate performance metrics is crucial. In this regard, 
to measure the adeptness of the four 1D CNN models quantitatively, the correlation coefficient 

(CC) in the time domain, the percentage reduction in artifacts in the time and frequency domain, 

the temporal and spectral relative root mean squared error (RRMSE) is measured using the 

following formulas which can be found in Equation 5-9 [12, 29]: 
 

𝐶𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
𝐶𝑜𝑣(�̂�,�̂�)

√𝑉𝑎𝑟(�̂�)𝑉𝑎𝑟(𝑥)
     (5) 

𝜂 = 100 (1 −
1−𝐶𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑎𝑓𝑡𝑒𝑟)

1−𝐶𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑏𝑒𝑓𝑜𝑟𝑒)
)    (6) 

𝛾 = 100 (1 −
1−𝐶𝐶𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝑎𝑓𝑡𝑒𝑟)

1−𝐶𝐶𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝑏𝑒𝑓𝑜𝑟𝑒)
)    (7) 

𝑅𝑅𝑀𝑆𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
𝑅𝑀𝑆( �̂�−𝑥)

𝑅𝑀𝑆(�̂�)
     (8) 

𝑅𝑅𝑀𝑆𝐸𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 =
𝑅𝑀𝑆(𝑃𝑆𝐷(�̂�)−𝑃𝑆𝐷(𝑥))

𝑅𝑀𝑆(𝑃𝑆𝐷(𝑥))
    (9) 
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Where, 𝐶𝑜𝑣 stands for covariance, 𝑉𝑎𝑟 means the variance, 𝑥 is the normalized ground truth 

EEG, �̂� is the predicted segment, 𝜂 stands for the temporal percentage reduction in EMG 

artifacts, 𝛾 is the spectral percentage reduction in EMG artifacts, 𝐶𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑎𝑓𝑡𝑒𝑟) is the 

temporal CC between predicted and ground truth EEG segment, 𝐶𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑏𝑒𝑓𝑜𝑟𝑒) is the  

temporal CC between contaminated and ground truth EEG segment, 𝐶𝐶𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝑎𝑓𝑡𝑒𝑟) is the 

frequency domain CC between predicted and ground truth EEG segment, 𝐶𝐶𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝑏𝑒𝑓𝑜𝑟𝑒) 

represents the frequency domain CC between contaminated and ground truth EEG segment, and 

PSD is the power spectral density. 

 
In addition to the aforementioned performance metrics, the average power ratio of each EEG 

frequency band (delta [1-4 Hz], theta [4-8 Hz], alpha [8-13 Hz], beta [13-30 Hz], and gamma 

[30-80 Hz] bands) to the whole band (1-80 Hz) is also computed and reported for the EMG 
contaminated EEG, ground truth EEG, and predicted EEG segments. 

 

4. RESULTS AND DISCUSSION 
 

The results of experiments A and B are described and discussed in detail in this section. 
 

4.1. Results of Experiment A 
 
Figure 4 depicts the average temporal correlation coefficient values between predicted denoised 

EEG segments (after the removal of EMG artifacts) and the ground truth EEG segments for ten 

distinct SNR values ranging from -7 dB to +2 dB obtained from four different 1D CNN models 
separately. The RRMSE values in the temporal and spectral domain are also plotted against ten 

distinct SNR levels in the same figure. 

 
For EMG artifacts removal from EEG, all four 1D CNN models performed very close as is 

evident from Figure 4 where almost overlapping curves of performance metrics can be seen. 

Overall, for EMG artifacts removal from noisy EEG, the performance of the DL models 

improved (higher CC, lower RRMSE value in temporal and spectral domain) with the increment 
of SNR level and vice versa, which is expected. As the SNR level increases, EMG noise also 

reduces proportionally and therefore DL models face lesser challenges in developing the non-

linear mapping function for predicting denoised EEG segments. In this process, the performance 
of the models improves for higher SNR levels and vice versa. 

 

 
 

Figure 4. Performance parameters of four 1D CNN models at ten different SNR levels after denoising 

EMG-contaminated EEG. 
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4.2. Results of Experiment B 
 

The goal of the four 1D segmentation networks is to remove/reduce EMG artifacts from the EEG 

segments. To provide a qualitative assessment of the denoising models used, Figure 5(a) shows 
one EMG-contaminated EEG segment whereas Figure 5(b)–(e) shows EMG artifacts-free EEG 

(predicted EEG) segments for all four models. 

 

 
 

Figure 5. (a) Example EMG contaminated EEG segment; EMG artifacts-free EEG segments predicted by 

(b) FPN, (c) U-Net, (d) MCGU-Net, and (e) LinkNet networks overlaid with the ground truth EEG. 

 

In Table 3, Temporal and spectral percentage reduction in EMG artifacts, as well as Temporal 

and spectral RRMSE values are summarized for the prediction of EMG artifacts free EEG 
segments by the four different 1D CNN models separately. For EMG corrupted EEG segments, 

the best denoising (elimination of EMG artifacts) performance is generated by the U-Net model. 

In the time domain, 90.01% reduction in EMG artifacts is found whereas, in the frequency 

domain, 95.49% EMG artifacts removal is observed while U-Net is utilized. Again, the very 
same model produced the lowest RRMSE values both in the time and frequency domain (0.10042 

and 0.20276, respectively) in comparison with the other three 1D CNN networks. While the U-

Net model dominates in producing better denoising performance, LinkNet produced the lowest 
temporal percentage reduction in EMG artifacts (85.09%) along with the highest temporal 

RRMSE (0.15681) wheras the FPN model produced lowest spectral percentage reduction in 

EMG artifacts (91.31%) along with the highest spectral RRMSE (0.31715).  
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Table 3. Performance parameters of 1D CNN models after denoising EMG-contaminated EEG. The 

asterisk (*) sign represents the best performing results 

 

Model Name 

Temporal 

Percentage 

Reduction in 

EMG 

Artifacts (in 

%) 

Spectral 

Percentage 

Reduction in 

EMG 

Artifacts (in 

%) 

Temporal RRMSE 
+/- Std. Deviation 

Spectral RRMSE 

+/- Std. Deviation 

FPN [31] 86.31 91.31 0.14131 +/- 0.08200 0.31715 +/- 0.26364 

U-Net [32] 90.01* 95.49* 0.10042 +/- 0.07001* 
0.20276 +/- 

0.14862* 

MCGU-Net [33] 89.10 94.13 0.13811 +/- 0.08458 0.28561 +/- 0.23205 

LinkNet[34] 85.09 91.88 0.15681 +/- 0.08843 0.30818 +/- 0.18860 

 

Table 4 represents the average power ratios calculated between five different EEG bands (Delta, 
Theta, Alpha, Beta, Gamma) before and after the elimination of EMG artifacts. The closer value 

of the average power ratios of different bands compared with ground truth EEG signifies the 

close resemblance and data fidelity while predicted by the deep learning models. We found that 
the U-Net model dominates in producing the closest average power ratios for theta, alpha, beta, 

and gamma-band while compared with the ground truth EEG and for delta band power ratio, 

MCGU-Net performed best whereas the EMG contaminated EEG produced the worst average 

power band ratios for all the five bands due to the incorporation of EMG noises, as expected. 
 

Table 4. Average power ratios of five EEG frequency bands before and after the denoising of EMG-

contaminated EEG. The asterisk (*) sign represents the best-performing results. 

 

Model/ Method Delta Theta Alpha Beta Gamma 

FPN [31] 0.41474 0.5641 0.12416 0.06783 0.0155 

U-Net [32] 0.40727 0.55701* 0.12904* 0.07516* 0.01822* 

MCGU-Net  [33] 0.40725* 0.57707 0.12354 0.06745 0.01351 

LinkNet[34] 0.41106 0.56383 0.12619 0.0697 0.01604 

EMG contaminated EEG 0.1331 0.10418 0.06205 0.20869 0.55126 

Ground Truth EEG 0.40504 0.5429 0.13225 0.08214 0.02146 

 

Due to the temporal complexity and presence of high-frequency components in EMG signals, 

removing EMG artifacts is always more challenging compared to the removal of other 

physiological artifacts from EEG recordings [37]. Similar phenomena are also observed in this 
well-crafted study. However, the findings from this work show that EEG artifact reduction DL 

models are very dependable owing to the amazing flexibility and strong generalizability of deep 

learning models. Although the DL-based denoising algorithms need a significant quantity of 
ground truth EEG data during the training phase, they may be used consistently to remove 

EMG artifacts from noisy EEG signals after the model has been trained. 

 
The use of a semi-synthetic dataset is also justified by the fact that the presence of ground truth 

EEG is required for assessing 1D CNN models’ performance. In this study, the EMG segments 

that are linearly mixed with EEG segments were collected from the real-life test subjects rather 

than producing it artificially which further ensures the efficacy of the proposed models. 
 

RRMSE in the time and frequency domain, as well as CC, have been calculated to assess the 

efficacy of the four distinct 1D segmentation networks in predicting artifact-free EEG data, as 
also reported in [29]. Additionally, to measure the effectiveness of DL models, we have included 

two new performance criteria in this study, namely the percentage decrease in EMG artifacts in 
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the time and frequency domains separately. We firmly believe that including the three-
performance metrics mentioned before with these new two would help standardize the 

quantitative performance evaluation of DL models to a great extent. 

 

5. CONCLUSIONS 
 
In this paper, four 1D CNN models i.e.  FPN, U-Net, MCGU-Net, and LinkNet are utilized to 

remove EMG artifacts from EEG signal. While using U-Net, the EMG artifacts from EMG-

corrupted EEG are decreased by 90.01% and 95.49%, in the time and frequency domains, 
respectively. The lowest temporal and spectral RRMSE (0.1 and 0.2, respectively) for the 

denoising of EMG artifacts from contaminated EEG segments are produced by the U-Net model. 

Also, the same model produced the closest average power ratio for the theta, alpha, beta, and 

gamma band compared with the ground truth EEG while removing EMG artifacts compared to 
the other three models. The findings of this work provide a convincing demonstration of the 

reliability of 1D CNN models in removing EMG artifacts caused by tainted EEG data. Our 

results demonstrated that DL approaches have a significant ability to remove EMG artifacts from 
EEG data, even at high noise levels. 
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