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ABSTRACT 
 

Due to the advancements of deep learning (DL), particularly in the areas of visual object 

detection and convolutional neural networks (CNN), insect detecetion in images has received a 

lot of attention from the research community in the last few years. This paper presents a 

systematic review of the literature on the topic of insect detection as a case of object detection in 

images. It covers 50 research papers on the subject and responds to three research questions: i) 

type of dataset used; ii) detection technique used; iii) insect location. The paper also provides a 

summary of existing methods used for insect detection. 
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1. INTRODUCTION 
 

Agriculture is the first human activity that enabled mankind to progress and develop. Agriculture 

and the food industry are the most important activities in the world today, owing to the world’s 

growing population and its increasing need for food [1], [2]. Insects have long been regarded as a 

serious crop threat. Insects have the primary effect of reducing the amount of food available to 

people by lowering agricultural productivity. This might decrease the quantity and the quality of 

food [3]. For agricultural pest forecasting, insect detection is critical. Agricultural professionals 

detect insect infestations based on daily observations. This manual process costs farmers a lot of 

time and money. To reduce the use of risky and expensive chemical products, early detection and 

monitoring of insects are necessary for taking the proper action and determining whether the 

insects are dangerous or not. As a result of the advancement of deep learning (DL), particularly in 

image processing, several methods for insect detection have been proposed. In the field of“ insect 

detection”, there is only one review of the semantic literature. Amarathunga et al. [4] wrote this 

SLR in 2021, where 2021 publications are not considered. The authors [4] mention that the 

publication window is only between 2010 and 2020. The article clarifies classification methods 

but does not discuss insect detection methods. Therefore, in addition to using the most recent 

detection and classification techniques, our paper also gives more attention to the gathering and 

preparation of the used dataset. 

 

2. SYSTEMATIC LITERATURE REVIEW 
 

We perform a systematic literature review following five steps: 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N20.html
https://doi.org/10.5121/csit.2022.122003


42         Computer Science & Information Technology (CS & IT) 

 

– Define research questions, 

– Identify papers that are related to this topic, 

– Add papers to the list containing titles and abstracts, 

– Remove non-relevant papers, 

– Identify the capabilities of each studied paper to answer the research questions. 

 

2.1. Research Questions 
 

The research questions that need to be answered by our study are as follows: 

 

– RQ1: What type of datasets of insects are used? 

This question focuses on the type of datasets used for insect detection (i.e., collected for the 

purpose of this paper or publicly available) 

– RQ2: Which object detection method is used for insect detection? 

A response to this question presents the commonly used technique for insect detection and 

the modification added to it. We notice that in some cases, the studied article presents a 

combination of detection and classification of insects. 

– RQ3: What is the location of the studied insect? 

RQ3’s response typically includes a description of the study’s location. It may not be 

mentioned in every instance. In this case, we consider the first author’s research institute or 

university’s location to be an insect’s location. 

 

2.2. Methodology 
 

Our search methodology follows two phases. First, a group of keywords is defined based on the 

research questions. Second, the selected keywords are aggregated using AND and OR operators 

to formulate the results below: 

 

(“deep learning” AND “insect detection“ AND “object detection“ AND “insect detection” AND 

(“insect detection” OR “insect pest detection”)). 

 

2.3. Selection Criteria 
 

This section presents the used selection criteria. 

 

– Inclusion Criteria (IC): 

• publications that match one of the search items, 

• research studies from journals, 

• conferences studies that were published from January 2012 to March 2022. 

– Exclusion Criteria (EC): 

• publications that were published before (or on) 31.12.2011, 

• publications that are not related to the research questions (i.e., insect detection), but 

appeared in the search, 

• language (only English is taken). 

 

2.4. Data Collection 
 

Figure 1 shows our search methodology. It follows three main steps. The first one (i.e., 

illustrated by the left side) describes the research findings for each of the search engines that 

were used. As a result, 407 articles were selected for our study. The 5 triangles illustrate the 
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second step. They describe the elimination criteria and the number of articles that have been 

removed. The final step (i.e., illustrated by the right side) displays the 50 articles that met the 

exclusion criteria in total, along with how they were distributed among the search engines. 

 

 
 

Figure 1. Data collection 

 

3. RESULTS AND DISCUSSION 
 

Our paper answers three different questions with respect to insect detection. Before we start 

discussing the questions, it is important to understand some basic concepts such as insect and 

insect pest. 

 

3.1.  Basic Concepts   
 

Hill [5] defines pests as follows: any animal (or plant) that causes harm or damage to humans. 

Even if they are just causing annoyances, such animals or crops qualify as pests. Even if it does 

not belong to a pest species, an animal or plant taken out of the context is considered a pest 

(individually) in agricultural terms. The same author [6] later defines a pest as follows: in the 

broadest sense, a pest is an insect (or organism) that causes harm to humans, livestock, crops, or 

personal property. The key word is harm, which is usually translated as damage, which can be 

measured (often quantitatively) in many cases. Furthermore, damage is frequently equated to 

monetary losses. Nuisance and disturbance are examples of harm at the most basic level of 

interpretation. Thus, a buzzing mosquito at night can keep you awake, and face flies in tropical 

Africa can be very distracting and reduce your productivity. Insects are referred to as pests in our 

study. 

 

3.2. RQ1: Type of Data Sets of Insects 
 

Since the data set is very important for deep learning models, it is common to discuss the used 

data before the used model. 
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3.2.1. Web Sources 

 

Articles follow this approach [7]– [10], and each of the previous articles uses different methods. 

However, the fact that they all focus on well-known insects is what unites them (e.g., spiders, 

mosquitoes, etc). The most well-known collection methods involve the use of search engines like 

Google [11] and Bing [12] or the use of websites like Flickr [13] as the standard gathering 

techniques. While Butera et al. [7] employ all three techniques, other authors [8], [9] use Google 

and Flickr, and some authors [10] do not mention the techniques employed. 

 

Using web sources is relatively fast, but not suitable for all insects. Some insects may not be 

found (not the same name in all countries) or lack photos of the target insect. Combining web 

sources and on-site images could be the answer to this issue. 

 

3.2.2. Combination of Web Sources and On-Site Images 

 

Combining web sources and on-site images could be more effective. When the number of 

photographs is insufficient, this approach requires more time and resources than using web 

sources only [14]– [16]. According to Takimoto et al. [14], field collection took two years (2017 

and 2018). While Hossain et al. [15] and Abeywardhana et al. [16] do not specify how much 

time has passed, Takimoto et al. [14] mentioned the use of a RICOH WG-4 digital camera 

alongside the Google search engine. 

 

However, Hossain et al. [15] utilized a mobile phone to shoot images in the field along with the 

Google search engine. The web source is not mentioned by Abeywardhana et al. [16], although a 

digital camera and a mobile phone were used. 

 

3.2.3. On-Site Images (Field or Laboratory) 

 

Some researchers collect data in the field, even though it is the hardest method compared to the 

other approaches. Different techniques were used to collect data, such as different types of traps, 

including yellow traps [17], [18], pheromone traps [19]– [21], yellow boards [22], and smart 

traps [23], [24] with an integrated camera. Other researchers use cameras and mobile phones to 

take photos of insects directly in the laboratory or field. In Lyu et al. [25], the pictures of the 

desired insects were taken in the laboratory. While Yang et al. [26] used Zhongwei Kechuang 

industrial cameras installed in field, other authors [27]– [29] used digital mobile cameras. 

Currently, Du et al. [30] use high-resolution UAV, and Bjerge et al. [31] use previously 

constructed portable computer versions, while Ard et al. [32] use a Scoutbox along with a 

camera, and Rustia et al. [33] use a wireless image monitoring system. It took them two years 

and two months to collect all their data. Finally, Chen et al. [34] use a small smart car. 

 

Collecting on-site images is still the most used approach for two reasons. First, a few open 

datasets are suitable for multi-class pest detection, and there is a lack of datasets that is suitable 

for a particular study goal. Menikdiwela et al. [9] explain why it is not a good idea to use an 

existing dataset. Because the spider’s scale is quite large in comparison to the background in 

those images, they do not use any of the spider images from the ImageNet dataset. Second, the 

trained model will be more robust if the dataset is as close as possible to a real scene in the 

natural environment. 

 

3.2.4. Existing Image Datasets 

 

The simplest method is to just take existing data, which in several cases is pre-processed. There 

are different types of existing data sets:  
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• Data collected by the farmer but not processed, e.g., Nam et al. [35], 

• The use of well-known datasets, e.g., IP 102 proposed by Wu et al. [36], which was used 

by several authors [37]– [39], and the 10c and 5c datasets, which were used by Liu et al. 

[40], 

• Datasets gathered by research institutions, such as the Moth Classification and Counting 

(MCC) dataset and European Moths dataset (EU-Moths), which were used by Korsch et 

al. [41], a dataset collected by the Laboratory of Medical Zoology, which was used by 

Luo et al. [42], and a dataset collected by the Hefei Institute of Physical Science (under 

the name of pest24), which was used by Liu et al. [43], 

• datasets gathered by other researchers, e.g., Mamdouh et al. [44] used the Dacus Image 

Recognition Toolkit (DIRT) data set collected by Kalamatianos et al. [45], Tanjim et al. 

[46] used datasets gathered by Rajan et al. [47], and Deserno et al. [48] used the yellow 

stick trap data set gathered by Ard et al. [49], 

• the Kaggle contest data set, used by SutHo et al. [50]. 

 

Since all images have already been processed, this is the most straightforward approach. 

Nevertheless, it is still insufficient for all use cases and cannot contain all insect species. 

 

3.2.5. Combination of Existing Image Data Sets and Other Methods 

 

Some articles combine more than one approach, such as Cabrera et al. [51] who use an existing 

data set called Yellow Sticky Trap data set along with a web data set. Also, Mazare et al. [52] 

use existing data photo libraries taken by the beneficiary institute and collected from traps. Xia et 

al. [53] utilize data already collected by Xie et al. [54] and data downloaded from the Internet. 

Huang et al. [55] use a combination of three methods collected from an e-trap and data from the 

Internet from iNaturalist [56], and an existing data set IP102 [36] and ImageNet (proposed by 

Deng et al. [57]). 

 

There are two articles [58], [59] that present recent datasets that professionals have gathered and 

annotated. Wang et al. [58] present AgriPest, with a total of 49.000 images and a total of 264.000 

objects. This dataset was collected in the field and labelled by 20 agricultural experts. Li et al. 

[59] mention that their dataset was collected in a warehouse under the name of RGBInsect, and 

they used smartphones with traps. The labelling was done by experts. RGBInsect has a total of 

7.514 images and more than 159.000 insect instances. 

 
Table 1. The percentage of each used type of dataset in all articles 

 

Dataset type (%) Data set sub-classes (%) 

Collected 

datasets 
56 

Web source 8 

Combination of web sources and on-site images 8 

On-site (field or laboratory) 40 

Existing 

datasets 
44 

Existing datasets 30 

Combination of existing data sets and other methods 14 

 

Before discussing the next research question, some points need to be clarified such as data 

labelling techniques and data augmentation. 

 

After collecting a data set, all images must be labelled. This task should be conducted by experts 

or some automated tools. Our paper describes the used labelling tools and the human-based 

labelling methods. 
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In the studied articles, only 11 of them mentioned the tool used to label the images. Nam et al. 

[35] mentioned that they used BBOX [60] while other authors [10], [14], [17], [25], [28], [33], 

[44] used LabelImg [61] and further authors [27], [30], [50] used LabelMe [62]. Some articles 

[35], [42], [44] mention that the labelling is done by experts, and Rustia et al. [33] state that 

labelling was done by experts and entomologists, while Ding et al. [19] mention technicians. 

 

Data augmentation techniques (DA) are used in 54% of the studied papers. Insufficient data for 

model training and testing is the cause of DA, which can result in over-fitting (which happens 

when a statistical model matches its training data close to perfection. Unfortunately, when this 

occurs, the algorithm’s goal is defeated because it cannot accurately perform against unobserved 

data.) or under-fitting (i.e., a data model has a high error rate on both the training set and 

unobserved data because it cannot accurately represent the relationship between the input and 

output variables. It happens when a model is overly simplistic, i.e., when there is insufficient 

regularization, training time, or input features). Rotation and zooming are the most used 

techniques for DA in general. Only Liu et al. [40] did not specify which method they employed. 

Rotation is used by Ding et al. [19], whereas reflection is used by Khalifa et al. [37]. Some 

articles use more than the first two, such as adding noise [8], scaling [10], and flipping and 

colour adjustments [18, 34]. 

 

3.3. RQ2: Object Detection Method Used for Insect Detection 
 

The discussion of the detection methods presented in the chosen articles will now proceed, but 

first, let's define the widely employed method. 

 

3.3.1. Convolutional Neural Networks CNNs 

 

Before discussing the employed methods, it is necessary to first review some fundamentals of 

deep learning.  

 

O’Shea et al. [63] state that Convolutional Neural Networks (CNNs) are a type of deep artificial 

neural network commonly used in image analysis. A CNN can learn spatially related features by 

treating an image as a volume. The volume of images in a CNN is transformed using a variety of 

specialized layers. Most of the computation for classifying an image is done by a convolutional 

layer. A convolutional layer contains a series of kernels that move or convolve over an image 

volume. The ability of CNNs to recognize textures, shapes, colours, and other image features as 

their training progresses is one of their most significant advantages. 

 

3.3.2.  Object Detection Techniques 

 

This section presents commonly used object detection techniques. In 2015, Girshick et al. [64] 

presented the Faster Region-based Convolutional Network method (Faster R-CNN) that takes as 

input an entire image and a set of object proposals. To create a feature map, the network first 

processes the entire image with several convolutional networks. Then, it extracts a fixed-length 

feature vector from the feature map. This model improves training and testing speed with 

increasing detection accuracy. 

 

Liu et al [65] presented the Single Shot multi-box Detector (SSD) algorithm as a one-stage 

representative detection algorithm, which has an obvious speed advantage compared to the two-

stage algorithm. Because of its good accuracy, SSD has become one of the main algorithms 

studied at present. 
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For a unified detector, Redmon et al. [66] proposed YOLO, which casts object detection as a 

regression problem from image pixels to spatially separated bounding boxes with associated 

class probabilities. Unlike the other approaches, YOLO does not include a stage for generating 

region proposals. As a result, YOLO uses a small set of candidate regions to detect objects 

directly. YOLO generates C class probabilities, B bounding box locations, and confidence scores 

by dividing an image into an S*S grid. In the articles under consideration, the following versions 

were used: YOLO V3 proposed by Redmon et al. [67], YOLO V4 proposed by Bochkovskiy et 

al. [68], and YOLO V5 [69]. 

 

3.3.3.  Classification Techniques 

 

Finally, we define some of the commonly used classification methods that have been mentioned 

in several articles. 

  

Support Vector Machines (SVM) [70] are used for classification in supervised machine learning. 

A SVM can deal with issues like high dimensionality, small sample sizes, and more. It is often 

used for forecasting [71] and for resolving nonlinear data modelling issues [72]. 

 

In 2012, Krizhevsky [73] designed a new CNN model called AlexNet. It achieved a top-5 error 

of 15.3 in the Large-Scale Visual Recognition Competition (ILSVRC). AlexNet is composed of 

8 layers. The first 5 layers are convolutional layers. Some of them are followed by max-pooling 

layers. The last 3 layers are fully connected layers. 

 

In 2014, Simonyan et al. [74] proposed VGG. By stacking a few tiny convolution kernels and 

max-pooling layers, it increased the representation depth of the network. The structure’s 

simplicity offered the benefit that the network performance could be enhanced by adding more 

depth. However, VGG makes use of more parameters, which consumes more memory. In the 

articles under consideration, the following versions were used: VGG16 and VGG19. 

 

In 2015, the new state-of-the-art for classification and detection in ILSVRC14 was achieved by 

Szegedy et al.’s CNN model [75], called GoogleNet. It is a transfer learning CNN with 22 layers, 

also known as Inception v1. The inception layer is the core concept of GoogleNet. Concatenating 

a 1 x 1 convolutional (Conv) layer, a 3 x 3 convolutional layer, and a 5 x 5 convolutional layer 

into a single output vector is what makes up the inception layer. In the articles under 

consideration, the following versions were used: Inception and InceptionV2. 

 

In 2016, He et al. [76] proposed ResNet. ResNet is one of the most used networks for 

classification and object detection tasks. The underlying idea are the residual blocks, which aim 

to simplify the training of neural networks characterized by many layers. Based on ResNet, Xie 

et al. [77] proposed ResNeXt, which uses the idea of increasing the cardinality. Compared with 

ResNet, it has the same parameters but higher accuracy. In the articles under consideration, the 

following versions were used: ResNet, ResNet18, and ResNet50. 

 

In 2016, Iandola et al. [78] designed a new CNN model called SqueezeNet. The authors intention 

with SqueezeNet was to develop a smaller CNN with fewer parameters that could more readily 

fit into computer memory. The authors use SqueezeNet to reduce model size by 50* (5 MB) 

compared to AlexNet (240 MB) of parameters while maintaining or improving Alex-Net’s top-1 

accuracy. 

 

In 2018, Sandler et al. [79] presented MobileNet as a deep convolutional architecture for mobile 

phones. It has a much smaller architecture and less calculation complexity than popular object 
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detector models like the R-CNN. In the articles under consideration, the following versions were 

used: MobileNet and MobileNetv2. 

 

3.3.4. Existing Detection Techniques 

 

YOLOv5 is used by several authors [44], [51], [80]. YOLOv4 is used by both Genaev et al. [27] 

and Chen et al. [34], where the former uses the regular version and the latter [30] uses the tiny 

version. Finally, several authors [10], [29], [31], [81], [82] use YOLOv3, also known by the use 

of Dark-Net backbone. We also notice that YOLO has been used in combination with other 

classification techniques, such as Takimoto et al. [14] used YOLOv4 and Efficient-Net, and 

Kuzuhara et al. [8] used YOLOv3 and Xception (proposed by Chollet et al. [83]), and Liu et al. 

[43] used YOLOv3 with Global Context (GC) Network (proposed by Cao et al. [84]). Finally, 

Rustia et al. [33] used a small version of YOLOv3 that is appropriate for small devices, as well 

as two different classifiers; the names of the two classifiers are not mentioned. 

 

Faster R-CNN is the second most popular technique [39],[59]. Faster R-CNN is frequently 

combined with other classification techniques. It is used by Ramalingam et al. [85] with ResNet, 

[32], [86] with Inception ResNet [87], while Rong et al. [22] used Mask R-CNN (which is 

improved version of Faster R-CNN, proposed by He et al. [88]) with the ResNet backbone. 

 

The last detection technique used is SSD. In some cases, it is used alone [25], [41], [89] while 

Nam et al. [35] use SSD with VGG16. Finally, Patel et al. [28] used a combination of three 

techniques: Faster R-CNN and SSD with two different feature extractors: Inception and 

MobileNet. 

 

3.3.5.  Existing Classification Techniques 

 

In the case only for classification techniques, SutHo et al. [50] use MobileNetv2, Luo et al. [42] 

use Inception-Net v3, Abeywardhana et al. [16] use SqueezeNet, Porrello et al. [90] use ResNet, 

Roosjen et al. [24] use ResNet18, and Menikdiwela et al. [9] utilize VGG16 fin-tuned on spiders. 

In the case of multiple techniques combined, Xia et al. [53] use VGG19 with a Region Proposal 

Network (RPN), Rajan et al. [47] use SVM along with a prepossessing algorithm, Chen et al. 

[86] use an improved Retina-Net (proposed by Lin et al. [91]) and convolutional block attention 

module (CBAM). Wang et al. [38] use ResNet50 with Features Pyramid Network (FPN). 

 

Several articles use transfer learning, such as Khalifa et al. [37] who use 3 classification 

techniques: AlexNet, GoogleNet, and SqueezeNet. Lie et al. [40] and Hong et al. [16] present 7 

techniques that have been transferred, while Butera et al. [7] use 12 techniques. Wang et al. [58] 

use 6 techniques to validate the proposed data set. 

 

3.3.6.  Proposals of New Techniques 

 

Six of the articles presented novel techniques. Ding et al. [19] demonstrated ConvNet, which is 

based on a standard CNN. Yang et al. [26] introduced the Multi-layer Convolutional Structure 

(MCSNet), a detection and classification model comprising three parts: a VGG16-based insect 

features subnet, a region proposal network (RPN), and a classification network. Region CNN (R-

CNN) is used to build the model’s overall architecture. MAMPNet, a Multi-Attention and Multi-

Part convolutional neural network based on ResNet50, is presented by Huang et al. [55]. Du et 

al. [30] present Pest R-CNN, which is based on the classical object detection model, Faster R-

CNN. Du et al. [30] also mention that their model is divided into three parts: the same as the 

previous model, but with improved feature extractors. 
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Liu et al. [21] propose Pest-Net, a region-based end-to-end approach that is also made up of three 

parts: the Channel Spatial Attention (CSA), a Region Proposal Network (RPN), and a Position-

Sensitive Score Map (PSSM) used to replace the Fully Connected layer. The backbone used is 

based on CNN, but it does not mention which one exactly. The CSA consists of two parts: the 

3D feature map and 1D feature vectors.  

 

The use of existing techniques does not mean that no modifications have been made. 

Menikdiwela et al. [9] change the last layer from a 1000 output layer to two output layers (spider 

and non-spider). Lyu et al. [25] add a top-down module to the SSD used. SutHo et al. [50] add 

two fully connected layers to the existing model. Geneav et al. [27] change the backbone of the 

used YOLO. Yuan et al. [80] changes the case-based learning (CBL) of YOLOv5. Chen et 

al.[86] add an improved full convolutional network (FCN) with CBAM for detection and 

classification.  

 

There are two articles that used existing techniques to propose an entire system for detection and 

classification based on traps along with monitoring systems (cameras). The articles are Junior et 

al. [17] and Bjerge et al. [23]. Junior et al. [17] propose InsectCv based on Mask R-CNN, while 

[23] propose an automated light trap to monitor moths and mentions the use of a CNN model. 

 

Only two of the studied articles do not mention the name of the used models. Hossain et al. [15] 

mention CNN in general, and Mazare et al. [52] mention artificial neural networks. 

 

Numerous types of insects, including spiders [9], wheat pests [25], and others, were found in the 

studied articles. There was an insect species called the moth that was present in numerous 

studies, and it has been a serious problem for farmers around the world. This insect has been 

detected in several publications [19], [23], [28], [30], [41], [50], [52]. whereas Patel et al. [28] 

detect three insects where two of them are moths, and Korsch et al. [41] detect this type of insect 

in 200 species. 

 

Some articles add the count of the insect to their model [17], [19], [22], [44], [50], [55] to 

determine the effectiveness of their installed trap. 

 

In the studied papers, the number of detected insects is variable: 

 

– Some articles only detect one insect or one class: [9], [19], [23], [30], [41], [42], [44], 

[50], [52], [82], [90], 

– Others detect two classes: [8], [14], [26], [46], 

– Other papers detect 3 classes: [7], [20], [27], [28], [32], [48], [51], 

– Other articles detect 4 classes: [17], and [89], 

– Some of the studied papers detect 5 classes: [35], [10], and [39], 

– There are some papers that detect 6 classes: [15], [16], [18], [25], [34], 

– Other papers detect from 7 to 9 classes: [24] (7 classes), [31], [37], and [85] (8 classes), 

and [22] (9 classes), 

– Some papers detect from 10 to 19 classes: [38] (10 classes), [86] (11 classes), [81] (12 

classes), [55], and [40] (15 classes), [21] (16 classes), and [80] (17 classes),  

– Only 3 articles detect more than 20 classes: [43], [53] (24 classes), and [29] (23 classes). 

 

Since there are fewer studies as the number of insects increases, 66% of all articles focus on 

insects with a population of one to six. 
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To summarize, this section presented the used detection techniques, which were divided into 

sub-classes: existing detection techniques; existing classification techniques; and proposals of 

novel techniques. 

 

3.4. RQ3: The Location of the Studied Insects 
 

In this section, we will present the locations of the studied articles in Africa, Europe, Asia, 

America, and Australia. 

 

– Asia: China (16), Vietnam, Japan, Thailand, Sri-Lanka, India, Taiwan, Singapore, 

Korea, Bangladesh, 

– America: Brazil, Canada, USA, Peru, 

– Europe: Denmark, Hungary, Romania, The Netherlands, Germany, Russia, 

– Africa: Egypt (2), 

– Australia: Australia (2). 

 
Table 2. The distribution of the chosen articles in continents 

 

Continent Number of Articles (%) 

Asia 27  054 

Africa  02  004 

Europe 14  028 

America  05  010 

Australia  02  004 

Total 50 100 

 
As shown in Table 2, Asia has the majority of studies done in the field of insect detection, for 

54% of all articles (27 of 50). We notice that China has 16 out of the total of 27 articles in Asia. 

In Africa, only Egypt has two studies, of which Mamdouh et al. [44] detect olive insects and 

Khalifa et al. [37] detect 8 types of insects. 

 

Two of the studied papers conduct their research in other countries: [32], [35]. Nam et al. [35] 

mention that the research centre is in Japan, but the studies are in Vietnam. They mention that 

their studies are based on customer requirements. The customer is facing a problem with a 

specific type of insect and asks for help. Ard et al. [32] mention the capture and annotation being 

done by experts from greenhouse research centres based in Belgium and Spain, since they are 

part of Europe. 

 

The publication date of the selected articles should also be mentioned. The selection criteria only 

produced 3 articles prior to 2018 [19] in 2016; and [9], [46] in 2017; and the remaining articles 

were published within the previous 4 years, as shown in figure 2. A total of 22 articles, or 44% of 

all articles, were published in 2021. Additionally, only nine articles were published in the first 

three months of 2022. If there is any significance to this, it might mean that there is a lot of 

interest in this area. 
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Figure 2. The distribution of the chosen articles 

 

4. CONCLUSION 
 

In our article, we provided a general overview of the field of insect detection by responding to 

three questions about it. The dataset that was used shows that on-site images that were taken in 

the field or a lab are more frequently used. We present the three types of detection techniques 

that are currently being used: existing detection or classification techniques; combinations of 

both; and new techniques. In addition, we discuss the use of transfer learning, which can shorten 

training periods. In response to the final query, which asks about the location of the detected 

insect, we note that China, which accounts for 56% of the articles chosen, is by far the leader in 

this area, while Africa still does not have a lot of concern in this field. 
 
We now briefly outline our upcoming work. Initially, we will start with a small dataset that only 

shows one type of insect that is found in Tunisia before moving on to a larger data set that 

includes several types of them. Attacks on olive trees are commonplace for this insect. The next 

step is to develop a deep learning model capable of accurately identifying and counting this 

insect. 
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