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ABSTRACT 
 
The novel coronavirus disease (COVID-19) is a highly contagious infectious disease. Even 
though there is a large pool of articles that showed the potential of using chest X-ray images in 

COVID-19 detection, a detailed study using a wide range of pre-trained convolutional neural 

network (CNN) encoders-based deep learning framework in screening viral, bacterial, and 

COVID-19 pneumonia are still missing. Deep learning network training is challenging without 

a properly annotated huge database. Transfer learning is a crucial technique for transferring 

knowledge from real-world object classification tasks to domain-specific tasks, and it may offer 

a viable answer. Although COVID-19 infection on the lungs and bacterial and viral pneumonia 

shares many similarities, they are treated differently. Therefore, it is crucial to appropriately 

diagnose them. The authors have compiled a large X-ray dataset (QU-MLG-COV) consisting of 

16,712 CXR images with 8851 normal, 3616 COVID-19, 1485 viral, and 2740 bacterial 

pneumonia CXR images. We employed image pre-processing methods and 21 deep pre-trained 

CNN encoders to extract features, which were then dimensionality reduced using principal 
component analysis (PCA) and classified into 4-classes. We trained and evaluated every 

cutting-edge pre-trained network to extract features to improve performance. CheXNet 

surpasses other networks for identifying COVID-19, Bacterial, Viral, and Normal, with an 

accuracy of 98.89 percent, 97.87 percent, 97.55 percent, and 99.09 percent, respectively. The 

deep layer network found significant overlaps between viral and bacterial images. The paper 

validates the network learning from the relevant area of the images by Score-CAM 

visualization. The performance of the various pre-trained networks is also thoroughly examined 

in the paper in terms of both inference time and well-known performance criteria.  
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1. INTRODUCTION 
 

The COVID-19 pandemic struck the world, and it has severely overrun healthcare systems 

worldwide. It had an impact on social, economic, and all facets of human life [1, 2]. As of 

August 2022, there were more than 6 million fatalities and more than 579 million active cases 

worldwide [3]. Reverse transcription-polymerase chain reaction (RT-PCR), which recognizes 

viral nucleic acid, is the gold standard for COVID-19 diagnosis. Low viral load and sample 
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mistakes might lead to inaccurate RT-PCR results [4, 5]. Antigen testing is quick but not 

particularly accurate [6-8]. 
 

Therefore, it has become necessary to search for more readily available, dependable, and easily 
accessible diagnostic equipment. The authors have used deep learning in a variety of areas, 

including food [9-11], renewable energy [12, 13], education [14], communication [15, 16], and 

others. The authors investigated the use of machine learning for biomedical solutions, such as 

reliable heart sound diagnosis in smart digital stethoscopes [17], real-time heart attack detection 

in reducing road accidents [18], for estimating blood pressure from Photoplethysmogram signal 

and demographic features [19], etc. The current advances in artificial intelligence have been a 

lifesaver in various biomedical abnormalities detection [20]. Radiological tests can be useful in 

the diagnosis and assessment of disease progression by assessing the severity of pneumonia 

because pneumonia has been found in the majority of COVID-19 patients. As a result, typical 

diagnosis methods for COVID-19 include Chest X-ray (CXR) and Chest computed tomography 

(CT)-scan [21-23]. The procedures used in CT scans can be costly and occasionally readily can 

contaminate the equipment due to the nature of this contagious disease, endangering the safety of 

the subsequent patients. The American College of Radiology does not endorse it either [24, 25]. 
However, X-ray machines are more readily accessible, more affordable, and portable (as opposed 

to CT machines), making them a more affordable option for treating lung-related conditions. The 

impact of Chest X-rays and artificial intelligence on lung-related disorders including tuberculosis 

[26], pneumonia [27], and even COVID-19 [22, 23, 28, 29] has been the subject of numerous 

investigations by the authors. Portable tools used in solitary spaces can also help to lower the risk 

of infection [30-32]. Therefore, if artificial intelligence (AI) on CXR can be made more 

dependable with the aid of more research, it would be a more cost-effective solution. 

 
Convolutional neural networks (CNNs), one type of deep learning artificial intelligence network, 

need large training data. Unfortunately, in the initial phase of the pandemic, CXR images are 

scarce for deep neural network training [33-36]. It is challenging to gather enough information 
from the small number of CXR images. In several investigations, it was suggested that increasing 

synthetic images for training might lessen the drawbacks. CovidGAN, an Auxiliary Classifier 

Generative Adversarial Network (ACGAN) based model, was utilized by Wang et al. in [37] to 

generate artificial data. A dataset of 403 COVID-CXR images and 721 normal images was used 
for their investigation. The accuracy of CNN's COVID-19 detection (using CXRs) has increased 

from 85% to 95%; thanks to the use of CovidGAN to generate synthetic data [37]. To achieve an 

accuracy of 96.58 percent, Chowdhury et al. in [38] built a unique framework called 
PDCOVIDNet using a dilated convolution in the parallel stack. Decompose, transfer, and 

compose (DeTraC) is a network proposed by Abbas et al. in [39] that checked anomalies by 

examining class borders of the images and reported an accuracy of 93.1 percent and sensitivity of 

100 percent in COVID-19 detection. In [35], Wang and Wong proposed a deep COVID19 
detection (COVID-Net) model, which classified normal, non-COVID pneumonia, and COVID-

19 groups with 92.4 percent accuracy. 

 
Some studies looked into how well learning of CNN models can be transferred to CXRs related 

learning. Transfer learning using CNN models has significantly helped in the process by using 

pre-trained networks for the task of differentiating between CXR images with normal and 
COVID-19-affected CXR by varying parameters like weights and biases of the pre-trained 

model. Azemin et al. in [40] used the ResNet-101 model to stratify COVID-19 with an accuracy 

of only 71.9 percent while Khan et al. [41] investigated a couple of pre-trained deep learning 

models like ResNet50, VGG16, VGG19, and DensNet121 and found that VGG16 and VGG19 
had the highest performance with 99.3 percent accuracy in COVID-19 detection. The pre-trained 

networks AlexNet, GoogLeNet, and ResNet18 were examined by Loey et al. in [42] using a 
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dataset of 307 images divided into four classes: COVID-19, normal, pneumonia bacterial, and 

pneumonia virus. According to the authors, GoogLeNet achieved 99.9% validation accuracy and 
100% testing accuracy. However, the study was carried out on a very small dataset and therefore, 

the performance reported in this study cannot be generalized on a large dataset.  

 

Using a modified version of VGG-16, Brunese et al. [43] analyzed a dataset of 6,523 chest X-
rays from patients with COVID-19, other lung illnesses, and healthy individuals. A 97 percent 

accuracy rate has been reported. In [44], the authors utilized the Xception model to categorize 

pneumonia, positive COVID-19, and negative COVID-19 on a dataset acquired from [45]. 
Training accuracy was stated to be 99.5% while the testing accuracy was 97.4%. Using a 

COVID-19 dataset made up of 2,951 CXR images and annotated ground-truth infection 

segmentation masks, Degerli et al. developed a novel method for COVID-19 infection map 

development in [46]. On the generated dataset, several encode-decoder (E-D) CNNs were trained 
and tested, with the best network achieving an F1 score for infection localization of 85.81 

percent. 

 

Deep CNN models were employed by Chowdhury et al. in [28] to classify images of normal, 

viral pneumonia, and COVID-19 chest X-rays into binary and three-class categories. Transfer 

learning was investigated on the generated dataset using pre-trained Squeezenet, Mobilenetv2, 
Inceptionv3, CheXNet, ResNet, and Densenet201 models. Three-class classification tasks 

produced an accuracy score of 97.9 percent while binary classification had a score of 99.7 

percent. However, the study did not include bacterial pneumonia which is often challenging to 
classify using CXR images. Moreover, the dataset size was much smaller compared to the current 

study. Additionally, few deep learning models were investigated in this and other similar transfer 

learning-based works. 
 

To the best of the authors' knowledge, an in-depth analysis of the performance of a large pool of 

state-of-the-art transfer learning models has not yet been demonstrated, even though a lot of 

research has been done on the use of artificial intelligence for COVID-19 detection from CXR 
images. The research community will benefit from this paper's addition to the body of knowledge 

about transfer learning's role in COVID-19 detection because it will help them to decide whether 

to deploy a particular network given that networks vary not only in terms of performance but also 
in terms of size, parameters, and inference time. These will be covered in the paper's remaining 

section. The network's performance's dependability as a visualization tool is tested, and since it 

uses one of the largest datasets accessible, it can also be regarded as trustworthy. The next 

sections of the chapter are organized as follows: Section II explored the technique in detail and 
gave a description of each transfer learning model, Section III presented the results and analyses 

and discussed them, and Section IV reported the conclusion. 

 

2. METHODOLOGY 
 

Figure 1 depicts the details of the proposed methodology used in this investigation. As can be 

observed, the authors investigated how well state-of-the-art pre-trained CNN models perform in 

useful feature extraction as a CNN encoder and then principal component analysis (PCA) was 
used to reduce the dimensionality to avoid overfitting of the classifier.  
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Figure 1. Framework of the proposed methodology. 

 
Finally, a 3-layer multilayer-perceptron (MLP) classifier is used in identifying a dataset made up 

of COVID-19, Bacterial Pneumonia, Viral Pneumonia, and Normal CXR images. In MLP, one 

input, one hidden layer and one output layer, where the rectilinear unit (ReLU) activation 

function is used in the input and hidden layers and sigmoid function is used in the output and 
Interpretable maps are used afterwards to describe the usefulness and reliability of the proposed 

framework. This section will go into detail on the cutting-edge pre-trained model that was 

investigated in this study, the specifics of the dataset that was used, as well as the pre-processing 
and training aspects. 

 

2.1. Deep Learning Pre-Trained Models 
 

Several pre-trained CNN models were trained on a very large dataset, ImageNet, which has 

demonstrated cutting-edge performance [47]. These pre-trained networks have been shown to 
perform consistently well in different computer vision problems and can be trained on new 

databases to adjust their weights and biases for that dataset or application. The introduction 

section already showed examples of such applications. Network depth, which is the maximum 
number of consecutive convolutional layers of fully connected layers along the path from the 

input layer to the output layer, varies between these networks in terms of size and the number of 

parameters in millions. The parameters utilized in the investigation are described in detail in 

Table 1. 
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Table 1 compares the several cutting-edge models that were used in the study. 

 

Network Network 

Depth 

Parameters 

[Millions] 

ResNet18 72 11.7 

ResNet50 107 25.6 

ResNet101 209 44.7 

VGG16 16 138.4 

VGG19 19 143.7 

InceptionV3 189 23.9 

InceptionResNetV2 449 55.9 

NASNetLarge 533 88.9 

PNASNet-5-Large * 86.1 

Xception 81 22.9 

CheXNet (DenseNet 

121) 

242 8.1 

DenseNet201 402 20.2 

ShuffleNet 50 1.4 

GoogLeNet 22 7 

MobileNetV2 105 3.5 

NASNetMobile 132 5.3 

DarkNet53 53 41 

AlexNet 8 61.1 

EfficientNetB0 132 5.3 

EfficientNetB4 258 19.5 

EfficientNetB7 438 66.7 

 
*Values are not known 

 

All the experiments were carried out in Python by importing all the models from the Pytorch 

library in Google ColabPro.  Through transfer learning, specific characteristics from the X-ray 
images of the COVID-infected pneumonia patients were extracted using the rich set of features 

that these networks had learned from the ImageNet dataset. To categorize the X-ray images into 

one of the following classes: Normal, Bacterial Pneumonia, Viral Pneumonia, and COVID-19, 
the dense layers of each network were dropped and after flattening features were extracted from 

each CNN encoder. The dimensionality of the feature vector was reduced using principal 

component analysis (PCA) with 90% variance to avoid over-fitting of the models on a 

comparatively small dataset, then the multi-layer perceptron (MLP) model with SoftMax layer 
with four neurons was used as a classifier to classify the 4-class problem. Below are further 

specifics about the networks used in this study: 

 
AlexNet - In the AlexNet, convolution processes were performed several times between max-

pooling operations, which allows the network to acquire richer features at all spatial scales. 

AlexNet placed first with a top-5 test error rate of 15.3% [48] in the 2012 ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC). 

 

VGG - VGG uses a standard CNN design and simply varies the depth: one network has 11 
weight layers (8 convolutional and 3 fully connected layers), while another network has 19 
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weight layers (16 convolutional and 3 fully connected layers). Convolutional layers have a 

relatively small width (number of channels), starting at 64 in the first layer and rising by a factor 

of 2 after each max-pooling layer to reach 512 [49]. 
 

DarkNet 53 - Like the VGG models, it primarily makes use of filters and doubles the number of 
channels after each phase of pooling. Batch normalization is used to regularize the model batch, 

speed up convergence, and stabilize training. It serves as the foundation for the well-known 

localization network, YOLOv3 [50]. 
 

ResNet - Overfitting, a well-known paradigm for deep networks trained on small datasets, can 

significantly reduce the generalization performance. When a lot of training epochs are run, the 
"vanishing gradient" problem eventually leads to network saturation, especially at the initially 

hidden layers, making the problem worse. By incorporating the idea of shortcut connections, 

where the activations of one layer that are given to the next layer are fed to the deeper layers as 

well, which is the core concept of a residual network (ResNet). This solves the vanishing gradient 
problem with deep CNN networks. ResNet is made up of 8 residual blocks, each of which has 

two convolutional layers with three kernels on each layer [51] and it has a couple of variants: 

ResNet 18, 50, 101, and 152. Going farther into the network causes the layer depth to rise every 

two blocks, with layer sizes of 64, 128, 256, and 512 kernels, respectively. In addition, a 7×7 

Conv layer is utilized in the network's beginning, followed by a pooling layer of stride 2, and a 

SoftMax classification layer at its end. 
 

GoogleNet - The classification of many types of problems performed better with GoogLeNet-

Inception networks. Smaller kernels are typically preferred for an area-specific feature that is 
dispersed over an image frame, whereas larger kernels are typically selected for global 

characteristics that are distributed over a vast region of images. This gave rise to the concept of 

inception layers, where kernels of various sizes - such as 1×1, 3×3, and 5×5 were combined 

within the same layer rather than moving further into the network [52, 53]. The Inception 

network begins with several traditional layers of 3×3 kernel, and 3 inception blocks, and 

culminates with an 8×8 global average pooling layer, followed by a SoftMax classifier. This 
architecture expands the network space where training can choose the best features. 

 

InceptionV3 - This network suggested several improvements over version InceptionV1, which 
improved accuracy and decreased computational cost. High-quality networks can be trained on 

relatively small training sets thanks to the combination of a decreased parameter count, extra 

regularization, batch-normalized auxiliary classifiers, and label smoothing [54]. 
 

InceptionResNetV2 – It is the result of combining the most recent revision of the Inception 

architecture [54] with the residual connections, reported in [51]. It was claimed that the 

combination would keep the computational efficiency of the Inception network architecture while 

gaining all the advantages of the residual technique. Although it is a more expensive hybrid 

version of Inception, it has been demonstrated to have better performance [55]. 
 

Xception - In neural computer vision architectures, this network substitutes depthwise separable 

convolutions for Inception modules. The feature extraction base of the network in the Xception 
architecture is composed of 36 convolutional layers. The Xception architecture is a linear stack of 

residually connected depthwise separable convolution layers [56]. 
 

DenseNet - Contrary to residual networks, DenseNet concatenates all feature maps as opposed to 

simply adding up residuals [57]. All layers inside a thick block are closely connected to one 

another, allowing for more monitoring between levels. The four dense blocks that make up 
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DenseNet, each have numerous convolution layers with 1×1 and 3×3 filters. Transition layers 

made up of a batch normalization layer, a 1×1 convolutional layer, and a 2×2 average pooling 
layer are used to divide the dense blocks. The network begins with a 7×7 convolutional layer, 

then moves on to a 3×3 max-pooling layer, both with a stride of 2 and concludes with a 7×7 

global average pooling layer, then a SoftMax layer. DenseNet has several variants, such as 

DenseNet121, DenseNet169, and DenseNet201.  
 

ChexNet - One of the largest publicly accessible Chest X-ray datasets is ChestX-ray14 [58], 

which has over 100,000 frontal view X-ray images with 14 disease classes. CheXNet [59] is a 

DenseNet (DenseNet121) model which was re-trained on this dataset. Therefore, CheXNet is the 

only pre-trained network, which is already trained on a large X-ray dataset, unlike other pre-
trained models. 

 

MobileNetV2 – There are real-time applications like robots, self-driving cars, augmented reality, 

etc., which need compact networks (lightweight networks). MobileNet is built on a simplified 
architecture that uses depthwise separable convolutions to construct compact deep neural 

networks. It was created for mobile and embedded vision applications. The model builder can 

select the appropriate model size for their application based on the constraints of the problem 
using two straightforward global hyperparameters (width multiplier and resolution multiplier) 

[60]. For MobileNet, Depthwise Separable Convolutions are a crucial component. The 

MobileNetV2 design starts with a fully convolutional layer with 32 filters, followed by 19 
bottleneck layers with residual connections between point wise convolutional layers. Except for 

the last fully connected layer, which has no nonlinearity and feeds into a SoftMax layer for 

classification, all Conv layers are followed by batch normalization and rectilinear unit (ReLU) 

nonlinear activation function [61]. 
 

ShuffleNet - The architecture of ShuffleNet makes use of two novel operations – point wise 
group convolution and channel shuffle - to significantly lower computation costs while retaining 

accuracy, it was also created with mobile phone deployment in mind. It has been improved to 

achieve lower complexity and is based on Residual network design [62]. 
 

NASNet - The NASNetLarge and NASNetMobile models' generalization has been greatly 

improved thanks to a new regularization method called ScheduledDropPath [63]. 
 

EfficientNet - Tan et al. presented EfficientNet in [64], which, in contrast to existing CNN 

scaling algorithms that use one-dimension scaling, balances the network's width, depth, and 

resolution. 

 

2.2. Description of the Database 
 

The authors have compiled a large dataset called, QU-MLG-COV in this study, which consists of 
16,712 CXR images with 8851 normal, 3616 COVID-19, 1485 viral pneumonia, and 2740 

bacterial pneumonia CXR images. The authors created this dataset by using and modifying 

various open-access databases for four different types of CXR images (COVID-19, normal 
(healthy), viral pneumonia, and bacterial pneumonia). The QU-MLG-COV dataset merged the 

COVID-19 dataset, the CXR dataset from the Radiological Society of North America (RSNA) 

[65], and the Chest X-Ray Images (Pneumonia) Kaggle dataset. 
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COVID-19 dataset 

 
COVID-19 CXR images that make up the COVID-19 dataset were gathered from several 

publically accessible datasets,  

 

have various lung abnormalities. We have taken 8851 healthy (normal) CXR images from the 
RSNA dataset for this study. Radiologists with the necessary training assessed the CXRs in the 

dataset, and clinical history, vital signs, and laboratory tests were used to confirm online sources 

and published studies. A total of 3616 X-ray images were collected; 2473 of them came from the 

BIMCV-COVID19+ dataset [66], 183 from a German medical school [67], 559 from the Italian 

Society of Medical Radiology (SIRM), GitHub, Kaggle, and Twitter [68-71], and 400 from 

another COVID-19 CXR repository [72]. The BIMCV-COVID19+ dataset, which includes 2473 

CXR pictures of COVID-19 patients obtained from digital X-ray (DX) and computerized X-ray 

(CX) equipment, is the single largest available dataset.  
 

RSNA Chest X-ray dataset  

 
About 26,684 CXR DICOM images make up the RSNA pneumonia detection challenge dataset 

[65], of which 8851 images are normal, and 17842 images are the condition. To categorize the 

CXR images into healthy control (normal) and lung infections, they were connected with clinical 
symptoms and history.  

 

Chest X-Ray Images (Pneumonia) 
 

On Kaggle, 5824 chest X-ray images of bacterial, viral, and normal pneumonia were found with 

resolutions ranging from 400p to 2000p. Out of 5824 chest X-ray images, 2760 images with 

bacterial pneumonia and 1485 with viral pneumonia are used in this study. Figure 2 provides 
some examples of the Chest X-Ray images used in this investigation. 

 

 
 
Figure 2. Sample CXR images from the dataset for COVID-19 (A), Normal (B), Viral Pneumonia (C), and 

Bacterial Pneumonia (D). 

 

2.3. Experimental Setup  
 

The dataset's distribution of labelled images across classes was unbalanced, which could have 
influenced training results. Data augmentation is a well-liked remedy for this unbalanced dataset 

[20, 27, 28], which may also be applied to expand the dataset because CNN models learn best 

from large databases. With 80% of the data used for training and 20% of the data being unseen 
for testing, the performance of the experiment conducted in this study was evaluated using five-

fold cross-validation. Additionally, to prevent overfitting, 20% of the training data are used as a 

validation set. 
 

A B C D
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Table 2. Before and after data augmentation, the number of photos per class and per fold Class 

 

Class # of 

Samples 

Training 

Samples 

Augmented Training 

Samples 

Validation 

Samples 

Test Samples 

COVID-19 3616 2893 2314×2=4628 579 723 

Normal 8851 7081 5665 1416 1770 

Viral 1485 1188 950×6 = 5700 238 297 

Bacterial 2760 2208 1766×3 = 5298 442 552 

 

Data augmentation was used to balance the dataset by applying rotations of 5 and 10 degrees to 

avoid unrealistic rotations of the images. Additionally, image translations in both the horizontal 
and vertical directions were applied within the range [-0.15, +0.15], as shown in Figure 3. The 

number of CXR images per class utilized for training, validation, and testing at each fold is listed 

in Table 2. 
 

 
 

Figure 3. Image augmentation: clockwise and anticlockwise rotation and horizontal and vertical translation. 

 

The experiment was conducted on ColabPro using the Pytorch library. Table 3 displays the 
training experiment's specifics. To create the final receiver operating characteristic (ROC) curve, 

confusion matrix, and evaluation matrices, a fivefold cross-validation result was averaged. 

 

 
 

 

 
 

 

 
 

 

Rotation

Translation

Original

A B C

E FD
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Table 3. Details of the experiment hyper-parameters  

 

Training parameter  Value 

batch size 16 

learning rate 0.001 

epochs 15 

epochs patience 8 

stopping criteria 8 

Loss function BCE 

optimizer ADAM 

 
Four evaluation metrics - Accuracy, Precision, Sensitivity, and F1-score with 95 percent 

confidence intervals (CIs) - were used to evaluate the performance of the deep CNN-based 

encoders. The overall confusion matrix, which compiles all test fold results from the 5-fold cross-
validation, was used to derive per-class values. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠_𝑖 =

𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖 + 𝑇𝑁𝑐𝑙𝑎𝑠𝑠_𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖 + 𝑇𝑁𝑐𝑙𝑎𝑠𝑠_𝑖 + 𝐹𝑃𝑐𝑙𝑎𝑠𝑠_𝑖 + 𝐹𝑁𝑐𝑙𝑎𝑠𝑠_𝑖
 (1) 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠_𝑖 =
𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠_𝑖 + 𝐹𝑃𝑐𝑙𝑎𝑠𝑠_𝑖
 

(2) 

  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖
=

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖

𝑇𝑃𝑐𝑙𝑎𝑠𝑠𝑖
+ 𝐹𝑁𝑐𝑙𝑎𝑠𝑠𝑖

 
(3) 

  

𝐹1_𝑠𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠𝑖
= 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
× 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖
+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠𝑖

 
(4) 

 

where 𝑐𝑙𝑎𝑠𝑠𝑖 = 𝐶𝑂𝑉𝐼𝐷 − 19, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑣𝑖𝑟𝑎𝑙 𝑎𝑛𝑑 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙.      
 

The weighted average values of each class were used to calculate the overall performance. Since 

class frequencies differ for the given task, the weighted average provides a better indication of 
overall performance. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑛1(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶𝑂𝑉𝐼𝐷) + 𝑛2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛𝑜𝑟𝑚𝑎𝑙 ) + 𝑛3(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑣𝑖𝑟𝑎𝑙 ) + 𝑛4(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 )

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4
 

(5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑛1(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐶𝑂𝑉𝐼𝐷) + 𝑛2(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑛𝑜𝑟𝑚𝑎𝑙) + 𝑛3(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑣𝑖𝑟𝑎𝑙) + 𝑛4(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙)

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4
 

(6) 

 𝐹1_𝑠𝑐𝑜𝑟𝑒 =
𝑛1(𝐹1_𝑠𝑐𝑜𝑟𝑒𝐶𝑂𝑉𝐼𝐷) + 𝑛2(𝐹1_𝑠𝑐𝑜𝑟𝑒𝑛𝑜𝑟𝑚𝑎𝑙) + 𝑛3(𝐹1_𝑠𝑐𝑜𝑟𝑒𝑣𝑖𝑟𝑎𝑙) + 𝑛4(𝐹1_𝑠𝑐𝑜𝑟𝑒𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙)

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4
 

(7) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑛1(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑂𝑉𝐼𝐷) + 𝑛2(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛𝑜𝑟𝑚𝑎𝑙) + 𝑛3(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑣𝑖𝑟𝑎𝑙) + 𝑛4(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙)

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4
 

(8) 

 

Where 𝑛1, 𝑛2 , 𝑛3 𝑎𝑛𝑑 𝑛4 are the total number of COVID-19, normal, viral, and bacterial cases 

respectively. 
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The authors also used a different metric, known as inference time, 𝛿(𝑡), to measure how long it 

took the framework to classify the image. The trade-off between accuracy and decision-making 
time can also be better understood by plotting inference time against the F1 score. To ensure that 

the best-performing network is picking up knowledge from important areas of the image, the 

authors have additionally verified the validity of the best-trained network using the well-known 

Score-CAM visualization technique [73]. 
 

3. RESULTS AND DISCUSSION  
 
Table 3 shows the overall performance of the various pre-trained network-based encoders in 

descending order of the F1-score. As can be observed, the performance of all different CNN 

encoder-based frameworks is comparable. It demonstrates that all networks, regardless of size, 

perform well in classifying the CXR images into various classes. This merely verifies how well 
pre-trained models on CXRs are, as described in numerous earlier literature. It is also noteworthy 

that EfficientNet B7 has the longest inference time—roughly 42.8 milliseconds—while AlexNet 

has the shortest—roughly 1.8 milliseconds. However, the best performing model is CheXNet, 
which is the only network pre-trained on a large CXR dataset along with already trained on 

ImageNet. There is a clear performance gap of more than 2% compared to other pre-trained 

models which are only trained on ImageNet. This highlights the importance of retraining the pre-

trained model on domain data, which can improve the model's performance.  
 

The best option initially can be appeared to be ResNet18 and MobileNetV2 because of their 

excellent performance and quick inference times. The greatest option for even deploying for 
mobile and smart devices would be MobileNetV2. CheXNet is DenseNet121 trained on large 

CXR images and performed better than the DenseNet201 variant of DenseNet. This also clearly 

reflects the importance of domain knowledge of the model during re-training. However, it is 
worth mentioning that the pre-trained model-based framework overall performs close to each 

other as they are already trained on a large image database and these models are very good at 

extracting useful image features.   
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Table 3. Overall network performance metrics in descending order of F1-Score. 

 

Encoders Inference 

time  

𝜹(𝒕)(ms) 

Accuracy  

(%) 

Precision  

(%) 

Sensitivity  

(%) 

F1-score 

 (%) 

CheXNet (DenseNet 

121) 

17.6 96.7 96.51 97.18 96.81 

EfficientNet B0 10.7 94.24 94.32 94.42 94.18 

ResNet 18 5.5 93.72 93.76 93.54 93.99 

MobileNet V2 2.5 93.19 93.29 93.07 92.99 

DenseNet201 25.8 93.02 92.67 93.07 92.99 

InceptionV3 23.8 92.52 92.26 92.52 92.3 

ResNet 101 10.8 92.81 91.45 91.85 91.45 

ResNet 50 6.1 91.71 91.23 91.71 91.35 

EfficientNet B7 42.8 91.47 91.47 91.47 91.47 

VGG 16 11 91.42 91.12 91.42 91.22 

AlexNet 1.8 91.16 91.06 91.37 91.16 

PNASNET-5-Large 28.8 91.15 91.04 91.15 91.09 

EfficientNet B4 28.7 90.96 90.86 90.96 90.91 

GoogLeNet 3.3 90.03 90.79 90.03 90.89 

Darknet53 7.2 90.88 90.56 90.88 90.66 

Xception 4.6 90.96 90.52 90.96 90.62 

VGG 19 12.1 90.91 90.47 90.92 90.61 

NASNetLarge 30.1 89.66 89.58 89.58 89.57 

ShuffleNet 6.6 89.77 89.46 89.77 89.51 

InceptionResNet 29.8 88.07 88.78 88.07 88.89 

NASNetMobile 4.8 87.24 87.11 87.25 87.17 

 

Table 4 shows the class-wise performance comparison of the top performing 5 networks, namely, 

CheXNet, EfficientNet B0, ResNet18, MobileNetV2, and DenseNet201. It is further confirmed 
by the class-specific performance that CheXNet outperforms all other models as it performs well 

not only overall but also in classes. It is also evident from the table that the networks may 

become perplexed when attempting to differentiate between viral and bacterial pneumonia CXRs. 

This is supported by the literature as the signature of infection from community-acquired viral 
pneumonia and bacterial pneumonia has some overlapping features, which is confusing the 

networks. It is clear from Tables 3 and 4 that the performance of CheXNet is higher than the 

other four top-performing models. This explains that CheXNet can extract more useful CXR 
features from the CXR images compared to other top-performing models.  
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Table 4. Class-wise performance comparison for the Top-5 networks 

 

Encoder Inference 

time  

𝜹(𝒕)(ms) 

Class Accuracy  

(%) 

Precision  

(%) 

Sensitivity  

(%) 

F1-score 

 (%) 

CheXNet 

(DenseNet 

121) 

17.6 Bacterial 

Pneumonia 

97.87 93 95 94 

COVID-19 98.89 97 99 98 

Normal 99.09 99 99 99 

Viral 

Pneumonia 

97.55 87 86 86 

Overall 96.7 96.51 97.18 96.81 

EfficientNet 

B0 

10.7 Bacterial 

Pneumonia 

96.74 89 92 90 

COVID-19 97.19 94 93 93 

Normal 97.75 98 98 98 

Viral 

Pneumonia 

96.81 83 81 82 

Overall 94.24 94.32 94.42 94.18 

ResNet18 5.5 Bacterial 
Pneumonia 

96.51 88 91 90 

COVID-19 96.91 93 93 93 

Normal 97.5 98 97 98 

Viral 

Pneumonia 

96.52 81 79 80 

Overall 93.72 93.76 93.54 93.99 

MobileNetV2 2.5 Bacterial 

Pneumonia 

96.28 87 90 89 

COVID-19 96.61 92 92 92 

Normal 97.24 98 97 97 

Viral 

Pneumonia 

96.25 80 78 79 

Overall 93.19 93.29 93.07 92.99 

DenseNet201 25.8 Bacterial 

Pneumonia 

96.17 87 90 89 

COVID-19 96.53 92 92 92 

Normal 97.09 97 97 97 

Viral 

Pneumonia 

96.25 79 78 79 

Overall 93.02 92.67 93.07 92.91 

 
The confusion matrix depicted in Figure 4 can be used to further confirm CheXNet's 

effectiveness. It is clear that the network does a good job of differentiating between normal and 

pathological behaviour (i.e. Viral Pneumonia, Bacterial Pneumonia, and COVID -19). It is doing 
an excellent job of determining the COVID-19 patients and healthy control. Although 

understandably, bacterial and viral pneumonia are both atypical forms of pneumonia, it can be 

difficult to distinguish them in the early stage as mentioned earlier. There is a good number miss-

classification between bacterial and viral pneumonia. The framework is missing some of the 
control patients to the unhealthy group, which could be due to the early stage CXR images, where 

the signature of infection is not evident.  
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Figure 4. Confusion Matrix for the top-performing model, CheXNet. 

 

 
 

Figure 5. F1-Score versus Inference time for the top-performing 5 models. 

 

Figure 5 shows a comparison of the Top-5 networks in terms of F1-Score and inference time. It is 
clear that while the networks' overall performances are comparable, the inference times vary 

significantly. The authors have further examined whether the networks are genuinely picking up 
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knowledge from the problem's "lungs," or region of interest. The Score-CAM visualization 

results displayed in Figure 6 can be used to confirm this. The network choosing the lung area for 
all classes can be verified by the Score-CAM visualization for the top-performing CheXNet 

network. 

 

 
 

Figure 6. Score-CAM-based heat-map for the best performing CheXNet model, showing where the 

network is learning more to take the decision. 

 

Table 5 summarizes the recent works on multi-class classification using deep learning 
algorithms. In all the cases, apart from the studies from our group, the size of the COVID dataset 

is small. However, the performance of this work is superior compared to the relevant literature.  

 
Table 5. Comparison with the current state-of-art/relevant studies. 

 

Articles Techniques Dataset Performance 

Tsung et al. 

[75] 

CNN (ResNet50) 15478 chest X-ray images 

(473 COVID) 

accuracy, sensitivity, and 

specificity obtained are 

93%, 90.1%, and 89.6% 

Abbas et al. 

[39] 

CNN (DeTraC) 1768 chest X-ray images 

(949 COVID) 

Accuracy-93.1% 

Jain et al. [76] CNN (Inception V3, 

Xception, and ResNet) 

6432 chest X-ray images 

(490 COVID) 

Accuracy-96% and 

Recall-92% 

Ohata et al. 

[77] 

Transfer learning + machine 

learning method 

(DenseNet201 + MLP) 

388 chest X-ray images 

(194 COVID) 

Acc: 95.641%, F1-score: 

95.633%, FPR: 4.103% 

Ioannis et al. 

[78] 

CNN 1427 chest X-ray images 

(224 COVID) 

accuracy, sensitivity, and 

specificity obtained are 

96%, 96.66%, and 96.46% 

Chowdhury et 

al. [28] 

Seven different deep CNN 

networks for classification 

423 COVID-19, 1485 

viral pneumonia, and 

1579 normal chest X-ray 

The classification 

accuracy, precision, 

sensitivity, and specificity 

Normal Bacterial Pneumonia Viral Pneumonia COVID-19
Normal Bacterial Pneumonia Viral Pneumonia COVID-19
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Articles Techniques Dataset Performance 

images were 99.55% and 97.9%, 

97.95%, 97.9%, and 

98.8%, respectively 

Rahman et al. 

[29] 

Seven different deep CNN 

networks for classification 

and a modified Unet 

network for segmentation 

18479 chest x-ray images 

(3616 COVID) 

accuracy of 96.29%, 

sensitivity of 97.28%, and 

the F1-score of 96.28%. In 

segmentation, Accuracy 

of 98.63%, and Dice score 

of 96.94% 

Proposed 

study 

Many different deep CNN 

networks and PCA-based 

framework for classification 

16,712 CXR images with 

8851 normal, 3616 

COVID-19, 1485 viral, 

and 2740 bacterial 

pneumonia 

Overall accuracy of 96.7% 

for 4-class problem 

 

4. CONCLUSION 
 

To the best of the authors' knowledge, an in-depth analysis of the performance of the popular 
twenty-one state-of-the-art transfer learning model has not yet been demonstrated, even though a 

lot of research has been done on the use of artificial intelligence for COVID-19 detection from 

CXR images. The research community will benefit from this paper's addition to the body of 
knowledge about transfer learning's role in COVID-19 detection because it will help them decide 

whether to deploy a particular network given that networks vary not only in terms of performance 

but also in terms of size, parameters, and inference time. Overall performance measurements 

reveal that all the networks perform well, however, CheXNet is found to perform better than all 
the other networks. It is found that the CheXNet is picking up information from the lung areas in 

the reliability test conducted utilizing Score-CAM visualization. The results show that CheXNet 

outperforms with an overall accuracy of 96.7%, with an inference time of 17.6 ms, which is 

inline with the findings reported in the previous work of the authors [74]. In future, the authors 

will deploy such framework in cloud platform to carryout a multi-centre study and to improve the 

model generalizability.  
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