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ABSTRACT 
 
Non-negative matrix factorization (NMF) is an effective dimension reduction tool widely used in 

pattern recognition and computer vision. However, conventional NMF models are neither 

robust enough, as their objective functions are sensitive to outliers, nor discriminative enough, 

as they completely ignore the discriminative information in data. In this paper, we proposed a 

robust discriminative NMF model (RDNMF) for learning an effective discriminative subspace 

from noisy dataset. In particular, RDNMF approximates observations by their reconstructions 

in the subspace via maximum correntropy criterion to prohibit outliers from influencing the 

subspace. To incorporate the discriminative information, RDNMF builds adjacent graphs by 
using maximum correntropy criterion based robust representation, and regularizes the model by 

margin maximization criterion. We developed a multiplicative update rule to optimize RDNMF 

and theoretically proved its convergence. Experimental results on popular datasets verify the 

effectiveness of RDNMF comparing with conventional NMF models, discriminative NMF 

models, and robust NMF models. 
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1. INTRODUCTION 
 

Dimension reduction plays an important role in pattern recognition, computer vision and 

information retrieval. It projects samples from high-dimensional space onto a low-dimensional 
space, and thus reveals the intrinsic structure of a dataset to boost the subsequent processing. 

Recently, non-negative matrix factorization (NMF, [1]) has been proven to be a powerful 

dimension reduction method which approximates a non-negative data matrix by the product of 

two lower dimensional non-negative matrices. Since NMF learns a natural parts-based 
representation, it has been widely used in many tasks such as data mining [2], pattern recognition 

[3,4], and computer vision [5]. 

 
Since traditional NMF methods cannot take advantage of the labels of a dataset, they usually 

perform unsatisfactorily in classification tasks. To overcome this deficiency, Zaferiou et al. [6] 

proposed discriminant NMF (DNMF) to incorporate the Fisher’s criterion into NMF. However, 
DNMF intrinsically assumes that samples obey Gaussian distribution, and this assumption is 

sometimes improper because NMF itself does not assume samples are Gaussian distributed. To 

overcome this problem, Guan et al. [7] proposed manifold regularized discriminative NMF (MD-

NMF) to retain discriminative information for subsequent classification by marginal 
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maximization. Neither DNMF nor MD-NMF can perform well on some seriously noisy datasets 
because their Frobenius norm based [8] or Kullback-Leiblur (KL) divergence based [9] loss 

functions are sensitive to outliers. 

 

In this paper, we propose a correntropy supervised NMF (CSNMF) to overcome this deficiency. 
In particular, inspired by [12], CSNMF measures the loss of NMF by the well-known correntropy 

induced metric (CIM, [10]) instead of Frobenius-norm and KL-divergence. CIM is controlled by 

a kernel size and approximates 
0L -norm when the loss is relatively large, and thus it is robust to 

noise of large magnitudes or outliers. Assuming even noisy samples have correct labels, to utilize 

the labels of the dataset, CSNMF narrows the distance between any samples of the same class in 

the lower dimensional space. Since this discriminative information is noise-free and the utilized 
CIM-based loss function filters out any noise of large magnitude in the dataset, CSNMF can 

boost subsequent classification performance on the noisy datasets. In addition, we developed a 

multiplicative update rule to optimize CSNMF and theoretically proved its convergence. The 
experimental results on several popular face image datasets confirm the effectiveness of our 

CSNMF comparing with the supervised NMF variants and the robustified NMF variants. 

 

The rest of this paper is organized as follows. Section 2 briefly reviews NMF and its variants. 
Section 3 presents the proposed CSNMF, the multiplicative update rule and its convergence. 

Section 4 shows the experimental results on popular face image datasets. We conclude this paper 

in Section 5. 
 

2. RELATED WORKS  
 

2.1. NMF 
 

Given any non-negative matrix, i.e., m nX 

 , non-negative matrix factorization (NMF, [1]) aims at 

finding two lower dimensional non-negative matrices, i.e., m rU 

  and r nV 

 , by minimizing the 

distance between X  and UV . Conventional NMF methods measure the distance by using either 

Kullback-Leibler (KL) divergence [9] or squared Frobenius-norm [8], and thus they are not 
robust enough because their underlying distributions cannot model outliers. In addition, 

traditional NMF methods are not supervised because they completely ignore labels of a dataset. 

 

2.2. NMF’s Variants 
 

From the seminal work of Lee and Seung [1] until now on, many NMF variants have been 
developed to deal with various practical tasks. Guan et al. [11] proposed a non-negative patch 

alignment framework (NPAF) to unify the popular NMF-related dimension reduction methods. 

The objective function of NPAF is 
 

   
0, 0

min , ,
2

T

U V
tr VLV D X UV

 


                               (1) 

 

where ( , )D    measures the loss of such factorization,   is a positive tradeoff parameter, and L  is 

an alignment matrix that encodes the statistical information of the datasets. 

 

Based on NPAF, one can easily develop novel NMF-related dimension reduction method. For 
example, Guan et al. [11] developed a manifold regularized discriminative non-negative matrix 

factorization (MD-NMF) method to preserve the local geometric structure and incorporate the 

discriminative information of the dataset. The objective function of MD-NMF is 
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However, like NMF, MD-NMF is not robust enough because its loss function is sensitive to 

outliers.  

 

To enhance the robustness of NMF, Du et al. [12] proposed a correntropy induced metric (CIM) 
based NMF (CIMNMF), which introduce CIM to measure the loss of the factorization. The 

objective function of CIMNMF is 

 
2

0, 0
min ( , ),

U V
CIM X UV

 
                                                               (3) 

 

where 
1/2

1
( , ) (0) ( ( ) )ij ij

ij

CIM X UV k k X UV
mn

 

 
   
 

  and 
2 22( ) zk z e 



  is a Gaussian kernel function and σ  

is the kernel size.  

 
Li et al. [13] proposed a graph regularized nonnegative matrix factorization method by 

maximizing the correntropy criterion (MCCGR) to incorporate the local geometric structure into 

CIMNMF, i.e., 

 

 
2

0, 0
1 1 1

1
max ,

2

m n r
T

ij ik kj
U V

i j k

k X U V tr VLV
 

  

 
      

 

                                                (4) 

 

where L  is the graph Laplacian of the constructed adjacent graph. 
 

Huang et al. [14] proposed robust manifold NMF (RMNMF) to preserve the local geometric 

structure in their previously developed robust NMF (RNMF) with 
2,1L -norm, i.e., 

 

 
2,10, 0,

min + ,
T

T

U V V V I
X UV tr VLV

  
                                                       (5) 

 

where 
2,1 2j

j

Y Y  signifies the 
2,1L -norm. Both MCCGR and RMNMF can be easily unified 

under NPAF. 
 

Although both MCCGR and RMNMF show promises by the authors, they still have flawless. 

Since outliers might violate the intrinsic geometric structure of the clean dataset without outliers, 
the alignment matrix constructed on the noisy observations might be inaccurate from the view 

point of NPAF. Therefore, there are still some space to develop a novel robust NMF variant by 

simultaneously considering the robustness of loss function and alignment matrix. 
 

3. CORRENTROPY SUPERVISED NMF 
 

In this section, we first described a novel correntropy supervised NMF (CSNMF) based on NPAF 

to overcome the deficiencies of NMF and its variants. Then we developed a multiplicative update 
rule (MUR) to solve CSNMF. At last, we theoretically proved that the objective function of 

CSNMF is non-increasing under MUR. 

 

 

 



40         Computer Science & Information Technology (CS & IT) 

 

3.1. Correntropy Induced Metric 
 

In information-theoretic learning (ITL), one often uses correntropy to process noise [10]. 

Correntropy is defined as a generalized similarity between two variables 
 

    , ,C x y E k x y                                                             (6) 

 

where k  is the kernel function, and both x  and y  represent random variables. Given n  samples, 

the estimator of correntropy is 

 

   
1

1ˆ , , .
n

i i

i

C x y k x y
n

 


                                                            (7) 

 
Based on ITL, Liu et al. [10] proposed the correntropy induced metric (CIM) 
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                                                 (8) 

 

where 
i i ie x y   represents the reconstruction error. The CIM value of large error in (8) is upper 

bounded by 1  regardless the scale of error. Therefore, CIM is less influenced by outliers. Due to 

its robustness, CIM has been widely used in many signal processing [10] and face recognition 

[15-16] tasks. 

 

3.2. The CSNMF Model 
 

Given n  samples arranged in a non-negative matrix, i.e., m nX 

 , correntropy supervised NMF 

(CSNMF) decomposes it into the product of two lower-rank matrices, i.e., X UV , by minimizing 

the CIM between X  and UV , i.e., 

 

 2

0, 0
min , ,

U V
CIM X UV

 
                                                             (9) 

 

where m rU 

  signifies the bases, and r nV 

  signifies the coefficients. Based on ITL [10][12], 

CSNMF succeeds to filter out outliers. 
 

For supervised learning, we assume that all samples including noisy samples are correctly 

labeled. Such assumption makes sense in some situations. Taking face recognition system for 
example, training images might be corrupted by illuminations but the subjects’ name are known 

and correct. CSNMF expect to dig the discriminative information from labels of the dataset by 

incorporating the labels of a dataset, i.e., it narrows the distance between samples of the same 

class, i.e., 
 

min ,i j ij
V

i j

v v S





2

20
                                                              (10) 

 

where 
2
 signifies the L2

-norm, and ijS  reflects the similarity between 
ix  and jx , i.e., 
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where ( )l   means the label of a sample. Although samples X  might be corrupted, considering the 

robustness of CIM, it is reasonable to trust that the coefficients V  is much less sensitive to 

outliers than X . Therefore, we can measure the distance between coefficients of two samples by 

the L2
-norm in (10) to benefit from its nice mathematic property. 

 

By simple algebra, we can rewrite the objective function in (10) as (VLV )T

i j ij

i j

v v S tr


 
2

2
, where 

L D S   and D  is a diagonal matrix with 
ii ij

ij

D S . By combing (9) and (10), we obtain the 

objective function of CSNMF as follows: 

 

 2

0, 0
min , tr(VLV ),

2

T

U V
CIM X UV


 

                                                      (12) 

 

where   is a positive trade-off parameter. Obviously, CSNMF can be unified by NPAF and L  is 

considered an alignment matrix. CSNMF is jointly non-convex, and thus it is impossible to find 

its global optimum in polynomial time. In the following section, we developed a multiplicative 

update rule (MUR) to find its local minimum. 

 

3.3. MUR for Optimizing CSNMF 
 

For solving the constrained optimization problem (12), by using the Lagrangian multiplier 

method [8], we can obtain the Lagrangian function as follows: 

 

       2 , ,
2

TCIM X UV tr VLV tr U tr V


    L                                   (13) 

 

where α  and β  are the Lagrangian multipliers for the constraints U 0  and V 0 , respectively. 

 

To solve (12), we firstly calculate the first-order derivatives of L  with respect to U  and V , i.e., 
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The above two equations can be further written as 
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where L L L D S     , and 0D  and 0S   construct the positive and negative components of L , 

respectively. 

 
By using the K.K.T. conditions [17], any stationary point of (12) satisfies the following 

conditions 
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By combing the first two conditions in (18), we can obtain the following equations 
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From (19-20), we can obtain the following multiplicative update rules: 
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where 
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  , and   signifies element-wise multiplication. Then 
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where 
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     . According to [12], the kernel size can be adaptively updated by 
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We summarized the total procedure of MUR in Algorithm 1. The stopping condition is written 

as follow: 
 
 

1 1

1 1 0 0

( , ) ,

( , ) ,

t t t t

t t

F U V F U V
tol

F U V F U V

 

 





, where  ,F U V  is the objective value in (12). It accepts the 

non-negative samples and outputs its factorization results. Although the MUR is derived from the 

Lagrangian multiplier method, we can theoretically analyze its convergence by using the 

auxiliary function in the following section.  
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Algorithm 1: The MUR for Optimizing CSNMF 

Input : m nX 

 , min{m,n}r . 

Output: m rU 

 , r nV 

 . 

1. Calculate the alignment matrix L  according to (12). 

2. Initialize 0U , 0V , and calculate  
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2
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3. Repeat 
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  . 

1t t  . 

4. Until {The stopping condition is satisfied.} 

5. tU U , tV V . 

 
The computational complexity of Algorithm 1 is dominated by two parts: the updating 

statements and the construction of the alignment matrix. The complexity of the first part is 

 2#iter O mnr n r  , where the #iter  is the iteration of the algorithm and  2O mnr n r  is the time cost 

of each iteration. The complexity of the second part is 2( )O n . Therefore, the total time complexity 

of Algorithm 1 is  2 2# ( )iter O mnr n r o n   . 

 

3.4. Theoretical Analysis 
 

Here we use the auxiliary function technique to prove the convergence of Algorithm 1. Let 

   2, ( , )
2

TF U V CIM X UV tr VLV


   denote the objective function in (12). 

 

Lamma 1. If there exists an function G  for  F x  which satisfies    ,G x x F x   and    ,G x x F x , 

then we call it auxiliary function, and F is non-increasing under the following update rule: 
 

 1 arg min , .t

x

x G x x                                                                      (24) 

 

Let    ,VJ V F U V  denotes the function with respect to V when U is fixed, and    ,UJ U F U V  

denotes the function with respect to U with V fixed. 
 

Lamma 2. Given 
tU , the following function 
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where 
ijuJ   is the first order derivative with respect to U , is an auxiliary function of 

ijuJ . 

 

Lamma 3. Given 
tV , the following function 
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where 
abvJ   is the first order derivative with respect to V, is an auxiliary function of 

abvJ . 

 
The proofs of both Lemma 2 and Lemma 3 are deduced in Appendix A and Appendix B for the 

smoothness of logic. 

 

According to Lamma 1 and Lemma 2,    argmin , , ,U U
U

F G U U V F U V
   
 

. Let 
 ,

0
ij

G U U

u





, we have the 

multiplicative update rule (22). According to Lamma 1 and Lemma 3, 

   ,argmin , ,V V
V

F U G V V F U V
   
 

. Let  ,
0

ab

G V V

v





, we have the multiplicative update rule (21). 

 

4. EXPERIMENTS 
 

In this section, we evaluate the effectiveness of the proposed CSNMF on several popular face 
datasets by comparing with CIMNMF [12] and MCCGR [13]. We also compared CSNMF with a 

supervised NMF (SNMF) to demonstrate the robustness of CSNMF. SNMF incorporates the 

identical discriminative information like CSNMF, i.e., 
 

,V
min (VLV ),T

FU

γ
X UV tr

 
 

2

0 0

1

2 2
                                                       (27) 

 

where 
F

  signifies the Frobenius norm, and L  is defined as the same alignment matrix as (12). 

 

4.1. Experimental Setting  
 
Our experiments are conducted on the Yale [18], UMIST [19] and ORL [20] datasets. Each 

experiment was test on the dataset which was divided to training set and test set. To sufficiently 

compare the performance, we use different sizes of training sets to learn the lower dimensional 
space. And in order to obtain better performance, it is important to choose a proper tradeoff 

parameter   in (12), here we set it to be 510  in all experiments. In the classification stage, we 

applied the nearest neighbor (NN) rule as a classifier to determine the labels of test samples. 
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Figure 1. Face recognition accuracy on the Yale dataset. We randomly selected (a) 4, (b) 5, and (c) 6 

images from each subject to learn the lower dimensional space and evaluate on the remaining images. The 

average results of 10 runs are reported. 

 

4.2. Face Recognition 
 

Yale dataset: The Yale [18] dataset contains 165 frontal view images from 15 subjects. Each 
one was taken 11 photos with varying facial expressions. And each image was normalized to 32 x 

32 pixel array then reformulated to a vector form. Figure 1 shows the average accuracy of 

CSNMF, MCCGR, SNMF and CIMNMF. Their dimensions ranged from 10 to 120, and we 

random selected 4, 5 and 6 images for each individual for training. Table 1 records the highest 
average classification accuracy and their corresponding dimension. The experimental results 

show that our CSNMF is significantly superior to other algorithms in most cases. The comparison 

between CSNMF and SNMF shows that the utilized CIM successfully filters out outliers. The 
comparison between CSNMF and CIMNMF shows that the incorporated labels enhances the 

discriminative ability of the learned subspace. The comparison between CSNMF and MCCGR 

reflects that the adjacent graph constructed purely on labels are more robust than that constructed 
on features. In summary, CSNMF can fully takes advantage of the labels of dataset meanwhile 

take off the influence of the noises from both samples and constructed adjacent graphs. 

 
Table 1. The highest average face recognition accuracies on the Yale dataset. 

 

Algorithm 6 7 9 

CSNMF 0.5705(35) 0.5994(30) 0.6453(40) 

CIMNMF 0.5229(30) 0.5694(30) 0.6060(35) 

MCCGR 0.4719(30) 0.5400(15) 0.5820(20) 

SNMF 0.5852(115) 0.5661(120) 0.6033(65) 

 

 
 

Figure 2. Face recognition accuracy on the UMIST dataset. We randomly selected (a) 6, (b) 7, and (c) 9 

images from each subject to learn the lower dimensional space and evaluate on the remaining images. The 

average results of 10 runs are reported. 
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UMIST dataset: The UMIST [19] dataset contains 575 images from 20 subjects. Each one holds 

41 to 82 images which varying in poses from profile to frontal views， and each image was 

normalized to 40 x 40 pixel array then reformulated to a vector form. Fig.2 shows the average 

accuracy of CSNMF, SNMF, MCCGR and CIM-NMF. Their dimensions range from 10 to 120, 
and we random selected 6, 7 and 9 images for each subject to comprise the training set. Table 3 

records the highest average face recognition accuracy and their corresponding dimension. The 

experimental results show that our CSNMF is superior to other two algorithms mostly because it 
simultaneously takes advantages of the robustness of CIM and the discriminative information of 

labels of the dataset. 

 
Table 2. The highest average face recognition accuracies on the UMIST dataset. 

 

Algorithm 6 7 9 

CSNMF 0.9839(85) 0.9972(75) 1.0000(75) 

CIMNMF 0.9750(115) 0.9869(95) 0.9942(110) 

MCCGR 0.9697(45) 0.9800(105) 0.9812(45) 

SNMF 0.9769(75) 0.9931(110) 0.9963(60) 

 

ORL dataset: The Cambridge ORL dataset consists of 400 images from 40 subjects, and each 
subject hold 10 images with varying lighting, facial expressions, and facial details. Each image 

was normalized to 32 x 32 pixel array then reformulated to a vector form. Fig.3 shows the 

average accuracy of CSNMF, SNMF, MCCGR and CIMNMF. Their dimensions range from 10 
to 120, and we random selected 4, 5 and 6 images for each subject in the learning procedure. 

Table 4 records the highest average face recognition accuracy and their corresponding dimension. 

The experimental results show that our CSNMF is superior to SNMF, MCCGR and CIMNMF, 

and it confirms that CSNMF simultaneously takes their advantages without introducing their 
disadvantages. 

 

 
 

Figure 3. Face recognition accuracy on the ORL dataset. We randomly selected (a) 4, (b) 5, and (c) 6 

images from each subject to learn the lower dimensional space and evaluate on the remaining images. The 

average results of 10 runs are reported. 

 
Table 3. The highest average face recognition accuracy on the ORL dataset. 

 

Algorithm 6 7 9 

CSNMF 0.8900(110) 0.9552(110) 0.9544(90) 

CIMNMF 0.8640(105) 0.9320(100) 0.9422(90) 

MCCGR 0.8363(45) 0.9137(70) 0.9284(45) 

SNMF 0.8869(80) 0.9400(75) 0.9478(55) 
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5. CONCLUSIONS 
 
In this paper, we proposed a correntropy supervised non-negative matrix factorization (CSNMF) 

method for learning the discriminative lower dimensional space from noisy datasets. Since 

CSNMF can take advantages of the robustness of maximum correntropy criterion and 
discriminant power of the labels of dataset under the non-negative patch alignment framework, it 

outperforms both robust variant and supervised variant of NMF. We developed a multiplicative 

update rule to solve CSNMF and proved that it can monotonically decreases the objective 
function of CSNMF. 
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Appendix A: Proof of Lemma 2 

 

It is obvious that    , 
ijuG u u J u . With the Taylor series expansion of  
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Then we can see that, 
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So we have    , 
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ij uG u u J u . This completes the proof.   □ 

 
Appendix B: Proof of Lemma 3 

 

It is obvious that    , 
abvG v v J v . With the Taylor series expansion of  

abvJ v , we have 
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Then we can see that 
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So we have    ,
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ab vG v v J v . This completes the proof.   □ 
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