Role-Based Embedded Domain-Specific
Language for Collaborative Multi-Agent
Systems through Blockchain Technology

Orgun Orug

TU Dresden, Software Technology Group, Nothnitzer Strafie 46, 01187,
Dresden

Abstract. Multi-agent systems have evolved with their complexities over the past few decades.
To create multi-agent systems, developers should understand the design, analysis, and implementa-
tion together. Agent-oriented software engineering applies best practices through mainly software
agents with abstraction levels in the multi-agent systems. However, abstraction levels take a con-
siderable amount of time due to the design complexity and adversity of the analysis phase before
implementing them. Moreover, trust and security of multi-agent systems have never been detailed
in the design and analysis phase even though the implementation of trust and security on the
tamper-proof data are necessary for developers. Nonetheless, object-oriented programming is the
right way to do it, when implementing complex software agents, one of the major problems is that
the object-oriented programming approach still has a complex process-interaction and a burden
of event-goal combination to represent actions by multi-agents. Designated roles with their rela-
tionships, invariants, and constraints of roles can be constructed based on blockchain contracts
between agents. Furthermore, in the case of new agents who participate in an agent network,
decentralization and transparency are two key parameters, which agents can exchange trusted
information and reach a consensus aspect of roles. This study will take the software agent develop-
ment as a whole with analysis, design, and development with role-object pattern in terms of smart
contract applications. In this paper, we aim to propose a role-based domain-specific language that
enables smart contracts which can be used in agent-oriented frameworks. Furthermore, we would
like to refer to methodology, results of the research, and case study to enlighten readers in a better
way. Finally, we summarize findings and highlight the main research points by inferencing in the
conclusion section.

Keywords: Software agents, Domain-specific languages, Blockchain technology, Smart contracts,
Role-based programming languages.

1 Introduction

Agent-oriented programming (AOP) can be considered as a subset of object-oriented
programming by showing the state of an object with human-like features such as
belief, desire, intentions, and goals. Moreover, an agent should be in the interaction
with other agents, in this way, agents are able to play roles as human-being does.
AOP specializes the object-oriented programming methodology by fixing state and

David C. Wyld et a. (Eds): SPTM, IPPR, CSIT, BDAP - 2021 .
pp. 01-19, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110501

https://doi.org/10.5121/csit.2021.110501
http://airccse.org/cscp.html
http://airccse.org/csit/V11N05.html

2 Computer Science & Information Technology (CS & IT)

modules (called agents) to consist of features that are coming from agent behaviors
[1]. Besides, agents can handle the message passing between other agents internally.

Agent-based systems have changed their characteristics over the past few decades
aspect of design, analysis, and implementation. Although one can find out the dif-
ficulty of exact definition in terms of the multi-agent system, multi-agent systems
are used broadly in the application areas such as supply chain management, dis-
tributed systems, smart grids, robotic motion planning. Multi-agent systems are
strongly dependent on contexts and roles. Each agent plays a role and it has a
minimal set of attributes that represents the environment. Moreover, agents should
have behaviors that are, in essence, related to implementing deterministic or non-
deterministic behaviors of an agent that operate a role that can be in sequential
order, cyclic order, or parallel order.

Agents must be in a relationship with external trusted parties to provide privacy
and consistency in multi-agent systems. However, the trust was mostly provided by
different logic interpretations and cumbersome ontological definitions in multi-agent
systems. Blockchain technology offers a credible and private data pool that can be
used with programmable contracts (smart contracts) as a shared database. As we
solved the credibility problem with blockchain technology, we can enforce the data
layer security, which is vital for data-driven multi-agent system communication, by
implementing smart contracts on the application layer of the blockchain protocol.
A smart contract is a piece of code that is stored on a blockchain by triggering coin-
based transactions with saved data and which reads and writes data in a blockchain
database E In addition, smart contracts can ensure the testability of role features,
secure transactions within the blockchain database, and separation of the business
logic (model) and application logic (system architecture).

Role-based programming can be integrated into the agent concept, which is
useful to reduce the complexity of the agent system design by categorizing the roles
played by agents and describing the collaboration among agents [2]. We should
consider equally grouping roles together in a collaborative relation or a compart-
ment. Roles are essentially defining context-oriented software, which is an explicit
data model of roles or objects that combine conditions, activated relationships of
roles, and deactivate relationships of roles [3]. For instance, an agent may produce
different results under different contexts, hence the given agent behaves differently
in a specified environment or a collaborative agent simulation.

Compartments belong to the research of the Compartment Role Object Model
(CROM) that establishes subtypes of natural types and relationship types be-
tween combined roles [4]. CROM combines the behavioral, relational, and context-
dependent nature of roles in a common framework [4]. It is a research project that
points out a framework for conceptual modeling that incorporates roles, graphical

! https://www.coindesk.com/three-smart-contract-misconceptions

https://www.coindesk.com/three-smart-contract-misconceptions

Computer Science & Information Technology (CS & IT) 3

modeling language, and a set-based formalization of roles, which has been con-
ducted by TU Dresden Software Technology [4].

Roles can make the design of multi-agent systems easier by implementing the
composition of role attributes, role invariants, role methods, and binding-interfaces.
The difference between roles and objects is whether or not the roles can move hosts
that exist in an environment [5]. Role-based software agents are related to context-
aware multi-agent systems. Context is any information that is accessible to the
program, where an entity is a person, place, or another agent that is considered
relevant to the determination of behavioral variations [6]. Agents can dynamically
collaborate with roles, create coalitions of trusted partners as an effective mecha-
nism to communicate with service requestors, find services requested by them, and
determine trusted services and provide services to the applicants without violat-
ing the privacy of the predefined environment [7]. A domain-specific language in
an agent-oriented language can map abstraction of role-compartment to particular
composition in an agent-oriented architecture. By adding design-by-contract lan-
guage such as Solidity, agent-oriented language can assure role constraints regarding
role-compartments.

1.1 Research Problem

Principally, multi-agent systems have been used as a software design methodol-
ogy for software application problems over a few decades. Frameworks and agent
communication languages that were proposed are still hard to understand and use
effectively in a decentralized and centralized network. Lack of standardization in the
area of analysis, design, and implementation increases software design complexity
as we plan to deploy decentralized agents.

Agent communication languages such as KQML, KIF, FIPA-ACL, AgentSpeak,
and major agent deployment frameworks JADE [§], JADEX [9], JASON [10], GOAL
[11], JACK Framework [12], JaCaMo [13], 3APL [14], and 2APL [I5] do not offer
any solution for privacy, security, and trust at the level of deployment of agents.
Furthermore, a variety of these languages creates a burden for language mapping.
Moreover, previous solutions have no practical design-by-contract approach so as
to establish the goals and actions of agents.

Researchers who deal with multi-agent systems still offer limited modeling solu-
tions for the aforementioned problems. A domain-specific modeling language that
merges general-purpose language, agent communication language, and blockchain-
based design-by-contract language can make the developers’ and researchers’ life
easier and we can map roles and goals at the analysis phase to the deployment
phase through smart contract language.

Thus, current challenges of the programming aspect of the multi-agent systems
lead us to create a new approach and a solution as we named role-based blockchain-
enabled domain-specific language for collaborative multi-agent systems.

4 Computer Science & Information Technology (CS & IT)

To conclude up regarding the research problem, we have defined research ques-
tions(RQ) as below:

— RQ1: Can a domain-specific language that comprises the main features of agent
communication language, agent framework, and smart contract language be
created?

— RQ2: How can roles, goals, and compartments be implemented with the domain-
specific language?

1.2 Motivation and Challenges

The main motivation of this study is to create a goal-driven (so-called cognitive)
agent-oriented language with blockchain technology to provide goals, desires, and
intentions in multi-agent systems. The current challenges of programming in multi-
agent systems lead us to create a new approach and solution in order to solve the
aforementioned problems in the Introduction section.

— Multi-agent systems or swarm management should assign trust and privacy
levels for new agents that consist of roles, goals, and plans to increase efficiency
in the network.

— Multi-agent systems should ensure trust and privacy in data-driven domains. A
human operator or an external participant should see it as a black-box process.

— System planning with the belief-desire-intention reasoning engine suffers the
vulnerability of critical decisions. Such decisions may be capabilities, role as-
signment between agents, limitations of follower agents, and leader agents while
changing positions.

— Protection against malicious agents is dependent on mostly language virtual
machine environments. A developer should know the specifications of a language
that relies on a virtual machine such as Java, which is a cumbersome and error-
prone task. If an agent is allowed to communicate with external agents, the
smart contract can alleviate the complexity of the security task.

1.3 Outline of Objectives and Contributions

Goal: The main goal of the present study is to implement a domain-specific lan-
guage to demonstrate role constraints, types, invariants, and relationships using
design-by-contracts, which can be done by external blockchain programming lan-
guage such as smart contracts, with a secured and trusted environment for software
agents.

Objectives:

— Identify existing roles from Compartment Role Object Model (CROM) in the
context of compartments.

Computer Science & Information Technology (CS & IT) 5

— Mapping from natural types, role types, compartment types, and relationship
types to the data structures to a smart contract language such as Solidity. We
would like to write a code generator from a general-purpose language to create
a smart contract language so that we will have a common language with the
agent-oriented programming language.

— Implementing role-definition to agent containers because entities can be bounded
to devices on which agents are able to move, create, and deploy.

— Defining collaborative goal-driven roles for agents themselves that reside in
agent containers.

— At the implementation phase, we defined the above-mentioned roles’ and goals’
specifications in a smart contract language for design-by-contract to combine
with an agent-oriented programming framework.

— If we have enough time in the course of Ph.D., we will deploy a real multi-agent
system such as a multi-agent unmanned air vehicle or robotic arm collaboration.

We will contribute to different aspects inducting from different research ar-
eas such as smart contract programming in the blockchain, multi-agent system
development frameworks and communication languages, and decentralized agent
networking. We have listed our conceivable contributions in this study:

— We introduce a new role-based agent-oriented domain-specific language that is
capable to use blockchain technology at the application layer through smart
contracts.

— We will evaluate the new language with existing agent-oriented languages aspect
of performance, usability, fault tolerance, adaptability, and cost of communica-
tion between agents.

— We will reduce the overhead of software agent design, analysis, and implementa-
tion for the belief-desire-intention framework by proposed domain-specific lan-

guage.

2 Background

Although software agents are not a new concept, there has not been found specific
definition regarding what exactly should be. In essence, an agent can be either
physical, software-based, or a combination of them. This kind of feature brought
us to define that the software agents must be in a new category. In this study, we
will implement software agents with role-oriented programming that works with
role-constraints, role-invariants, role-relationship, and compartments using smart
contracts in blockchain technology.

Role-based systems are autonomic systems, which means that the role-based
multi-agent systems design planned capabilities and collaborative skills to delegate
tasks to components [I6]. Roles are an abstract concept of objects that can be

6 Computer Science & Information Technology (CS & IT)

transferable between software agents; however, liveness is much longer than an ob-
ject. Moreover, roles can have compartments that consist of states of roles, contexts
in a software agent, and events. A software agent can connect with other software
agents. While an agent is transferring a message to other agents, it should have two
unique features which are:

— Self-awareness: States and context can be adaptable according to the envi-
ronment. Software agents should adjust their contexts according to the environ-
ment.

— Self-configuring: When a new software agent has joined into the network, the
agent should configure and reconfigure itself.

Context-dependency refers to the self-awareness and self-configuring definitions
to provide agent awareness in a dynamic and high-flexible environment in multi-
agent systems. Roles can be assigned to a specialized context and one can use
multiple contexts in multiple compartments. Since contexts are strictly bounded
by runtime evaluation, design-by-contract can be more useful than test-driven de-
velopment which is the compile-time metaprogramming feature.

The idea of usability of the blockchain technology for multi-agent systems will
be tested and implemented with this study. Commonly, trust and privacy should
be provided by external components, application programming interfaces, or other
intrusive technologies. In this study, we want to implement the application layer of
blockchain so that one can easily employ a multi-agent system in a non-intrusive
secure decentralized computing platform.

Design-by-Contract (DbC) is a software testing and correctness methodology.
Principally, it uses preconditions, postconditions, asserts statements, and invari-
ants. However, general-purpose language-based creates heavyweight code depen-
dency while realizing the design-by-contract approach. A domain-specific language
for this purpose is an elegant way to implement unit testing with test-driven devel-
opment. In the aspect of the multi-agent systems, contracts may have states and
changeable contexts so that developers can apply the design-by-contract into the
blockchain-based domain-specific language. Actually, this programming approach
is called defensive programming, because the application is responsible for figuring
out what has occurred an error in postconditions or preconditions. For instance,
when an agent planned a goal in a collaborative relationship, we should decide as-
sumptions (precondition) and the effect of these assumptions (postcondition) that
are valid. In this case, the effect should be the agent’s goals. If the procedure that
has been defined as a precondition is executed correctly, then it will terminate suc-
cessfully to complete the given goal as achieved. Normally, there are a couple of
ways to do it, but we will use Solidity stateful blockchain language to do so.

Embedded domain-specific language stands for incorporating a domain-specific
language in a general-purpose language such as Java, Scala, or Kotlin. Despite that

Computer Science & Information Technology (CS & IT) 7

it restricts language extensibility, in this study, we will use the advantage of a
host language such as annotation-based code generation, runtime, or compile-time
metaprogramming.

Last but not least, even though the solution consists of different types of lan-
guages such as an agent communication language, general-purpose language, and
smart contract language, we believe that the embedded domain-specific language
can ensure the design and analysis, and implementation layer compact in terms
of agent deployment. We will reduce the complexity of the design, analysis, and
implementation layer as much as possible and also maintain existing agent-oriented
programming languages at the implementation layer.

3 Methodology and Expected Outcome

In the Ph.D. journey, we will focus on the different domain-specific language ap-
proaches. To this end, we will use the simplified methodology called Prometheus
[17] methodology as shown in [1| We will separate the research into layers to create
a simple application.

Analysis Layer

Compartment

Domain
entites
Design
Design Layer

I I nowledge
Perceptions based
oirmatiol
Implementation
Deployment Layer
Concrete
Behavioral
Constructs
Concrete
Actions
J Interaction

STATEFUL SMART CONTRACTS
(BLOCKCHAIN SHARED DATABASE)

Fig. 1. Concept of Role-based Blockchain-Enabled Agent Programming

8 Computer Science & Information Technology (CS & IT)

In the Analysis Layer, we should define domain entities and roles regarding
the application. This will be likely a planning phase for large-scale applications
when each agent involves in the network, there will be a dynamic model to create
roles, goals, and domain entities. This step is a necessity to abstract computation
behavior for realizing as software agents or programs. In the analysis layer, we need
to implement the role-object pattern for agent applications because role-oriented
languages have no direct connection with object-oriented applications.

We will design the agent features without considering the environment that
is uncertain, unpredictable, time-sensitive, and highly dynamic. Having identified
these abstraction characters of the planned environment, let us give a desirable
definition of agents to perform in the implementation layer. The design and Analysis
layer is a kind of requirement engineering phase because we should understand and
specify the requirements of the given environment through a dynamic model. As
shown in Figure (I, we can assign rules, activities, and perception features with an
agent object so that we can implement role-oriented programming features such
as constraints and relationships between agents. Agent rules can be assigned with
beliefs (Information about the environment) and desires (agent’s wishes), which
means that the agent can define objectives by starting from an internal state to
accomplish a goal.

Deployment of a software agent contains fundamental features such as commu-
nication languages, software components, users, hardware elements connecting to
software agents. The deployment layer is closely related to the implementation layer
of software agents, which is why practical frameworks follow up the design pattern
that provides a recurring solution in a particular design problem. Design patterns
such as Belief-Desire-Intention (BDI) or Reactive Agent Frameworks have no re-
strictive specifications and it has not been implemented with the design-by-contract
approach. However, most of the agent-oriented practical frameworks have followed
the BDI approach, but agent frameworks do not have to be dependent on the BDI
approach. Agents should be synchronized with behaviors that show concurrent op-
erations such as atomicity, thread prioritization, and lock-based synchronization.

As shown in Figure [I] agents may have interaction with a database in order
to keep data in persistent storage. Blockchain technology provides smart contracts
(programmable code snippets that work in the blockchain database) and database
functionality in a deterministic way. Determinism means that a copy of a partic-
ular blockchain database should work in the exact same way in another environ-
ment. The database can accept stateful (Turing complete) or stateless (non-Turing
complete) smart contracts to operate transactions from agent applications. Once
an agent triggered action, the action performs a transaction into the blockchain
database. Security and privacy of agent smart contracts can be provided by Merkle
trees that present zero-knowledge proof and verifiable data structure.

Computer Science & Information Technology (CS & IT) 9

Agent-Oriented Libraries and Frameworks can be applied to role-object pat-
tern in order to connect between agents’s and roles’ world. In this proposal, we
implement role and natural types in a stateful contract with a contract wrapper as
below:

4 Proposed Solutions

Blockehain Agent))
DSL Role Relationships

Contract Code i
Modeler * Generation <>Flolelnvanants

Role Constraints

r

y Design by
/’ Events Contracts
Goals
Agent Components il)
Beliefs
Plan Library

A 4

Cleaner,
Flcbot' ~
o ispatcher
weing e O
Robot~ O -
Q Architectural
Deployment

Fig. 2. System Architecture of Role-based Blockchain Enabled Language

In order to ensure all kinds of functionalities in Figure[2 we create a domain-specific
language runtime interpreter with existing technologies. In the first step of imple-
mentation of the proposed language, we would like to focus on a stateful contract
language, which is called Solidity, Agentspeak with Jason, and parser generator
such as Another Tool for Language Recognition (ANTLR). We are planning to do
language translation with various technologies such as ANTLR so that we will cre-
ate the Abstract Syntax Tree to transform into the Concrete Syntax Tree. Due to
the nature of agent-oriented programming, it seems to have a necessity of runtime-
metaprogramming, which is allowing us to generate code from meta-objects at the
runtime, we might have a solution with compile-time metaprogramming. In this
case, one of the biggest challenges is to select general-purpose language because the
language can identify annotations either is in a runtime-time or compile-time role
type checking.

10 Computer Science & Information Technology (CS & IT)

public static final String FUNC_ADDROLES = "addRoles";
public static final String FUNC_GETADDRESSES = "getAddresses";
public static final String FUNC_GETALIAS = "getAlias";

public static final String FUNC_REMOVEROLES = "removeRoles";

public RemoteFunctionCall<TransactionReceipt> addRoles(String addr, String alieases) {
final org.web3j.abi.datatypes.Function function = new org.web3j.abi.datatypes.Function(
FUNC_ADDROLES,
Arrays.<Type>asList(new org.web3j.abi.datatypes.Address(160, addr),
new org.web3j.abi.datatypes.Utf8String(alieases)),
Collections.<TypeReference<?>>emptyList());
return executeRemoteCallTransaction(function);

function addRoles(address addr, string memory alieases) public{
_addresses [msg.sender].push(addr);
_roleAliases[msg.sender] [addr] = alieases;

Fig. 3. Code Snippet from Role-Object Pattern in a Stateful Smart Contract

(@ TRANSACTIONS

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE
30 12 6721975 CONSTANTINOPLE 5777 HTTP://127.0.0.1:8545 AUTOMINING ORACLECONTRACT

sk TX 0x3e6939b900de4se8el23ec6al93faea81l73ae8e0d77ae3f57e0ae66894970779a

SENDER ADDRESS TO CONTRACT ADDRESS
0xdDDd207a94a527446C1e9AC5f5009F8515Dea8f1 0x8aB9bfeFA9e1491d4637b17CCE64731e8a49CBI7

VALUE GAS USED GAS PRICE GASLIMIT MINED IN BLOCK
0.00 ETH 70486 20000000000 6721975 29

TX DATA
0x83d933020000000000000000000000001ab631f3fefafd3786dabaefe059d14690f9d3
526f6c653

EVENTS

private final static Striﬁg PRIVATE_KEY = "d9c5e395970994db652a448d6d192e011bd57505010178a811ceb010eal01f21";

private final static BigInteger GAS_LIMIT = BigInteger.valueOf(6721975L);
private final static BigInteger GAS_PRICE = BigInteger.valueOf(20000000000L);

private final static String RECIPIENT = "0xdDDd207a94a527446C1e9AC5f5009F8515Dea8f1\n" +

Fig. 4. Data from the Merkle Hash Tree in the Blockchain

Computer Science & Information Technology (CS & IT) 11

The red rectangle In Figure [3| the address aliases that have been specified
for smart contract functions need to call contract wrappers that were written in
a general-purpose language. The blue rectangle in Figure [3| shows a procedure
from a stateful smart contract that adds address and provides constraints checking.
The green rectangle in Figure [3| demonstrates a contract wrapper in a general-
purpose language in order to control contract address from Java language. In this
example, we would like to simulate role attributes by adding role types into a smart
contract. Role types and natural types can be represented in the object-oriented
data structures and we can use smart contract addresses in order for reaching out to
contracts in the blockchain consensus network. Smart contracts provide trust and
security because the data will be shown as below in Figure[d] TX value represents a
transaction in the blockchain that has been processed by one of the smart contracts.
Private keys are assigned to accounts as shown in Figure 4] and developers can use
accounts like a shared memory to realize limited concurrent applications. In the
end, all values are in a Merkle tree through the hashed data structure. Moreover,
one of the important security features of a distributed system is the single point of
failure can be prevented by gas costs. A typical gas cost consists of an operation and
a transaction cost that can prevent the consumption of general system resources to
the end.

5 Limitations

In this section, we will list our limitations regarding the process of writing the
thesis.

We will present examples regarding autonomous and collaboration features. In

context with collaboration, supply chain simulation between participants would

be enough. As for the autonomous feature, robotic motion planning can be
simulated with our proposal.

— We will focus on the existing meta-model such as CROM for specifying com-
municative entity types. In the context of CROM research, we will follow the
guideline regarding roles and compartments that have been specified before.

— We will develop an application based on a stateful smart contract language
such as Solidity the following design-by-contract approach that interacts with
different agents in the context of role-oriented programming.

— This research is limited to the KQML and FIPA agent communication languages
and it does not comprise stateless blockchain language. Due to the nature of the
stateless blockchain language, it does not purely suitable for the object-oriented
approach.

— As for ontological representation, semantic heterogeneity between agent-oriented

frameworks will not be taken into consideration. So we basically will handle ex-

isting ontologies and will not advance to ontology engineering.

12 Computer Science & Information Technology (CS & IT)

6 State of the Art

When we conduct a literature review, we have been investigated the following two
literature research questions (LRQ):

— LR(@ 1: How can Blockchain and Multi-agent System improve each other?

— LR@ 2: How does role-based programming affect collaborative multi-agent sys-
tems?

— LR@ 3: Can the context of agents be an affiliated aspect of role-oriented pro-
gramming through blockchain technology in multi-agent systems?

ALAADIN is one of the oldest metamodels to define models of organizations for
agents and this model defines a very simple description of coordination and negation
schema [I8]. The authors determine that the role is an abstract representation of an
agent or service function within a group. Groups are a set of features that behave
as an atomic entity so that an agent dynamically joins, creates, or leaves groups
[19].

When we focus on behavioral roles for agent interaction, (Cabri et. al. 2003)
proposed that an agent system defines a role as a set of capabilities and ex-
pected behaviors. BRAIN is an approach that covers a role-based interaction model,
where agents’ interactions and behaviors are embedded in roles [19]. Moreover, they
achieved and advise to realize agent-oriented features, separation of concerns, and
reuse of solutions [20]. To describe agents semantically, they defined a language
called XRole that exploits built-up definitions of roles. These definitions consist of
name, description, addresses, role description, and contents of the agents with re-
lational features such as MinOccurs and MaxOccurs. RoleSystem is an interaction
infrastructure that implements the model of BRAIN [2I]. Roles defined by XRole
can be read by humans as well as by agents and tools [21]. The RoleSystem provides
two main components which are: reqRegistration, to register an agent in the system
with a specified role; searchForRoleAgent, to search for agents playing a given role
between agents and server agents [21].

The planning capability of multi-agent systems is one of the key features that
the blockchain should take care of it. After assigning roles, plan execution of the
multi-agent systems should complete distributed ordering actions. To do so, a smart
contract can be used which are essentially collections of distributed code and data
representing some business logic that works with the blockchain distributed con-
sensus protocols [22]. The main idea of this paper is to coordinate the steps of
multi-agents through the smart contracts aspect of distributed plan execution. In
this plan execution, multiple smart contracts can be used such as oracle contract,
which is allowing to exploits data in the off-chain storage, or contract of precondi-
tions and postconditions to provide the design-by-contract pattern.

Gaia is one of the methodologies at the design and analysis phases in multi-agent
systems. The main goal of this methodology is to model multi-agent systems for an

Computer Science & Information Technology (CS & IT) 13

organization where different roles interact [19]. The Gaia methodology defines the
features of roles as below:

— Responsibilities: They specify the functionalities of agents that play roles.

— Permissions: They are a set of rights associated with roles in which agents play.

— Activities: Internal computation of an agent. This does not take into consider-
ation the relationship between agents.

— Protocols: This is related to interaction roles indicating agent-to-agent commu-
nication.

The role-based evolutionary programming (RoleEP) presents cooperative mo-
bile agents to collaborate in achieving a common goal [19]. The authors of RoleEP
state that an object becomes an agent by binding itself to a role that is defined in
a dynamic environment [5]. The authors have defined the basic concept as below
[5].

— Environment: An environment is composed of environment attributes, methods
of environment, and roles.

— Roles: A role, which can move between hosts that exist in an environment,
contains role attributes, role methods, and binding interfaces.

— Objects: An object, which cannot move between hosts, is composed of attributes
and methods.

— Agents: An object or mental identity that binds itself with some roles and
acquires traveling/collaboration functions.

— Binding Interface: A binding interface, which looks like an abstract method
interface, is used when an object binds itself with a role.

Implementation of a domain-specific language may have metamodel design
paths at the level of M1 (User Model), M2 (Unified Modeling Language), M3 (Meta
Object Facility). For instance, AgentDSL is a domain-specific language for cross-
cutting concerns for agents, which is supporting aspect-oriented programming, and
non-crosscutting concerns [23]. The authors of AgentDSL defines a code generator
that maps abstractions.

7 Research Plan

During this research, we will try to answer the research questions that we have
asked in the Research Problem.

— In the first year, we will deal with the design and analysis phase from the pre-
vious studies that have been conducted by various researchers from the depart-
ment of Role-based software infrastructures for continuous-context-sensitive-
systems (ROSI) at TU Dresden. Roles, compartments, negotiation, and collab-
oration parameters will be defined and domains of case studies may expand or
narrow down.

14 Computer Science & Information Technology (CS & IT)

— In the second year, the design of agent architecture, topology, and sample ap-
plications of the domain-specific language will be proposed. A prototype will be
shown in accordance with the supervisorship’ requirements.

— In the third year, the implementation layer will be completely finished, and
then we will agree on a final version of the thesis with the supervisor. If we have
enough time at this stage of the research, we will develop the implementation
further for the practical solution with regard to the robotic applications.

At the end of our Ph.D. journey, it is believed that developers or experts can im-
plement role-based agent-oriented applications in the blockchain network by having
an embedded domain-specific language.

The complexity of this research can easily increase because a couple of ap-
proaches should be used in the end. However, we have limited the approach with
collaborative software agents either can work on hardware solutions or enterprise
applications.

8 Case Study

Manufacturing scheduling is the process of assignment of timing for order, manufac-
turing, and delivery. So we should provide a good quality per unit and the number
of units should be maximized per slot in the production line. At the same time, we
need to minimize the waste of resource requirements and potential failures. More-
over, the designed system sometimes collaborates with human operators because
they need to get involved in some complex problems by collaborating with robotic
cells [24].

Another case study that we want to focus on the collaborative multi robots
scenario. Let us assume we have two robot agents and a human agent. The human
agent should work with two robot agents. The first robot agent will do actions
picking material from an assembly line, finding the next slot, dropping the material,
and moving towards a new position, respectively. So the second robot agent will just
do action welding with the material into some raw good. Human-agent is going to
check the material quality before welding it. Welding and moving can be goals for
us and they need to have preconditions and postconditions. The actions of robots
are pick(), find(), drop(), and goal of the robots can be the result of checking slots.
We will put the goals and actions into the smart contract language with their data
and then we will evaluate in terms of preconditions and postconditions. We can use
these features in a domain-specific language that has been generated from an agent
communication language, a general-purpose agent framework, and a stateful smart
contract language.

Computer Science & Information Technology (CS & IT) 15

9 Result of the Research Study

Distributed Multi-Agent
Ledger Systems
Technology |

/
P

Role-Oriented
Programming

Fig. 5. Research Overview regarding different approaches

As readers can see in Figure b we are bringing together three fields, which are
blockchain technology (BCT), multi-agent systems, and role-oriented program-
ming, into a domain-specific language. As shown in Figure [we have demon-
strated blockchain technology as distributed ledger technology. Aside from it being
implementation-agnostic, a distributed ledger can be in a form of private, public,
federated, or consortium networks.

In the distributed ledger part, we have focused on smart contract development
that can give us the ability to develop an application in a decentralized environment.
Multi-agent systems are suitable for the decentralized environment and they can
use role-oriented attributes. Contract-oriented approach with smart contracts can
benefit from role-orientation, which principally represents relations in a given model
implementing an embedded domain-specific language. The language supports the
following distinctive attributes:

— Agents that were created by the template language can connect to each other
in a peer-to-peer manner.

— Agents can behave autonomous and partly proactive by having relationships
between roles. In addition, applications that have programmed by the domain-
specific language is easy to use by making certain of obtaining belief-oriented
architecture and action-oriented program.

16 Computer Science & Information Technology (CS & IT)

— Agents can collaborate and develop social behavior in the context of role-
oriented programming by keeping the data secure with smart contracts.

10 Conclusion

The paper addressed the challenge of compelling trust and security in multi-agent
systems and their role-oriented features by realizing smart contracts regarding
blockchain technology (BCT). The main purpose of the research is to give a new
approach to the intersection between smart contract programming, role-oriented
programming, and agent-oriented programming. The course of findings among var-
ious research areas guides us to design a domain-specific language to contribute to
the multi-agent system area.

— There is no common understanding in terms of multi-agent system methodol-
ogy, analysis, design, or implementation. This increases the complexity of the
research in the multi-agent system area.

— The limited number of domain-driven agent-oriented languages have been pro-
vided so that one can notice that multi-agent system research is most likely
conceptual and it does not provide prototype and result-evaluated research.

— Synthesized metamodeling from scratch in different research areas can be am-
biguous; thus, we believe that embedded domain-specific language with blockchain
can solve most of the problems for multi-agent systems.

— Role-oriented programming with smart contracts is challenging because the
choices of technology can affect the result of the study. For instance, state-
ful and stateless contracts are not advanced technologies that can employ all of
the features of the object-oriented paradigm. Turing complete and non-Turing
complete technologies will be scrutinized in future work.

In a nutshell, this paper presented a new significant role approach with smart
contract programming implementing hash data structure and providing data secu-
rity regarding roles. Presenting our approach will simplify the application develop-
ment process for further researchers.

11 Future Work

In future work, a tool will be developed for a role-based multi-agent system. This
tool includes an annotation processor and template-based code generator for agent
behaviors. By selecting a general-purpose language, the system will be evaluated
with qualitative and quantitative tools. Smart contracts will be generated through
annotation processing with customized annotations and agents will be generated
with a template-based code generator tool for one of the selected frameworks which
have been presented in the introduction section.

Computer Science & Information Technology (CS & IT) 17

Acknowledgements

The author would like to thank his supervisors, Prof. Dr. Uwe Afimann, and Prof.
Dr. Susanne Strahringer, for the patient guidance, encouragement, and comments
they have provided to shape his doctoral vision. This work is funded by the German
Research (DFG) within the Research Training Group Role-Based Software Infras-
tructures for continuous-context-sensitive Systems (GRK 1907, TU Dresden, Soft-
ware Technology Group, Nothnitzer Strafile 46, 01187, Dresden).

18

Computer Science & Information Technology (CS & IT)

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

Y. Shoham, “Agent-oriented programming,” Artificial Intelligence, vol. 60, no. 1,
pp. 51-92, 1993. [Online]. Available: |https://www.sciencedirect.com/science/article/pii/
0004370293900349

. H. Zhu and M. Zhou, “Role-based multi-agent systems,” Personalized Information Retrieval

and Access: Concepts, Methods and Practices, 01 2008.

T. Kithn, M. Leuth&user, S. Gotz, C. Seidl, and U. Amann, “A metamodel family for role-
based modeling and programming languages,” in Software Language Engineering, B. Combe-
male, D. J. Pearce, O. Barais, and J. J. Vinju, Eds. Cham: Springer International Publishing,
2014, pp. 141-160.

. T. Kithn, S. Béhme, S. Gotz, and U. Afimann, “A combined formal model for relational

context-dependent roles,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language FEngineering, ser. SLE 2015. New York, NY,
USA: Association for Computing Machinery, 2015, p. 113-124. [Online]. Available:
https://doi.org/10.1145/2814251.2814255

. G. Cabri, L. Ferrari, L. Leonardi, and F. Zambonelli, “A survey about role-based interaction

proposals for agents,” 01 2005.

B. Ferreira and A. M. Leitao, “Context-Oriented Algorithmic Design,” in 7th Symposium
on Languages, Applications and Technologies (SLATE 2018), ser. OpenAccess Series in
Informatics (OASIcs), P. R. Henriques, J. P. Leal, A. M. Leitao, and X. G. Guinovart, Eds.,
vol. 62. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, pp.
7:1-7:14. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2018/9265

K. Wan and V. Alagar, “A context-aware trust model for service-oriented multi-agent sys-
tems,” vol. 5472, 04 2009, pp. 221-236.

. F. Bellifemine, G. Caire, and D. Greenwood, “Developing multi-agent systems with jade,”

Developing Multi-Agent Systems with JADE, pp. 1-286, 02 2007.

A. Pokahr, L. Braubach, and W. Lamersdorf, Jadex: A BDI Reasoning Engine. Boston, MA:
Springer US, 2005, pp. 149-174. [Online]. Available: https://doi.org/10.1007/0-387-26350-0-6
R. Bordini, J. Hiibner, and M. Wooldridge, Programming Multi-Agent Systems in AgentSpeak
Using Jason, 10 2007, vol. 8.

K. Hindriks and J. Dix, GOAL: A Multi-agent Programming Language Applied to an Explo-
ration Game, 03 2014, vol. 9783642544323, pp. 112-136.

M. Winikoff, Jack™ Intelligent Agents: An Industrial Strength Platform, 01 2005, pp. 175-193.
O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci, and A. Santi, “Multi-agent oriented
programming with jacamo,” Science of Computer Programming, vol. 78, no. 6, pp. 747 — 761,
2013, special section: The Programming Languages track at the 26th ACM Symposium on
Applied Computing (SAC 2011) & Special section on Agent-oriented Design Methods and
Programming Techniques for Distributed Computing in Dynamic and Complex Environments.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S016764231100181X
M. Dastani, F. Dignum, and J.-j. Meyer, “3apl: A programming language for cognitive agents,”
01 2003.

M. Dastani, “2apl: a practical agent programming language,” Autonomous Agents
and Multi-Agent Systems, vol. 16, no. 3, pp. 214-248, Jun 2008. [Online]. Available:
https://doi.org/10.1007/s10458-008-9036-y:

H. Zhu, “Role-based autonomic systems,” IJSSCI, vol. 2, pp. 32-51, 01 2010.

R. Bordini, M. Dastani, and M. Winikoff, “Current issues in multi-agent systems develop-
ment,” vol. 4457, 09 2006, pp. 38-61.

Aalaadin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 169-179. [Online].
Available: https://doi.org/10.1007/3-540-26815-4 8

G. Cabri, L. Leonardi, L. Ferrari, and F. Zambonelli, “Role-based software agent interaction
models: A survey,” Knowledge Eng. Review, vol. 25, pp. 397419, 12 2010.

https://www.sciencedirect.com/science/article/pii/0004370293900349
https://www.sciencedirect.com/science/article/pii/0004370293900349
https://doi.org/10.1145/2814251.2814255
http://drops.dagstuhl.de/opus/volltexte/2018/9265
https://doi.org/10.1007/0-387-26350-0_6
http://www.sciencedirect.com/science/article/pii/S016764231100181X
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/3-540-26815-4_8

20.

21.

22.

23.

24.

Computer Science & Information Technology (CS & IT) 19

G. Cabri, L. Leonardi, and F. Zambonelli, “Implementing role-based interactions for internet
agents,” 02 2003, pp. 380— 387.

Cabri, Giacomo and Leonardi, Letizia and Zambonelli, Franco, “Brain: A framework for flex-
ible role-based interactions in multiagent systems,” vol. 2888, 11 2003, pp. 145-161.

A. Shukla, S. K. Mohalik, and R. Badrinath, “Smart contracts for multiagent plan execution
in untrusted cyber-physical systems,” in 2018 IEEE 25th International Conference on High
Performance Computing Workshops (HiPCW), 2018, pp. 86-94.

U. Kulesza, A. Garcia, C. Lucena, and P. Alencar, “A generative approach for multi-agent
system development,” vol. 3390, 05 2004, pp. 52—69.

A. Bauer, D. Wollherr, and M. Buss, “Human-robot collaboration: a survey,” Int. J. Humanoid
Robotics, vol. 5, pp. 47-66, 2008.

Author

Orcun Orug received M.Sc. from TU Chemnitz, and he graduated from Kocaeli
University with a B.Sc. degree. Currently, he is pursuing his Ph.D. in Computer
Engineering-Software Technology at the Dresden Technical University. His research
interests include programming languages, multi-agent systems, role-oriented pro-
gramming, natural language processing, decentralized, and distributed applications.

© 2021 By AIRCC Publishing Corporation. Thisarticle is published under the Creative Commons Attribution
(CCBY) license.

http://airccse.org

	Role-Based Embedded Domain-Specific Language for Collaborative Multi-Agent Systems through Blockchain Technology
	Introduction
	Research Problem
	Motivation and Challenges
	Outline of Objectives and Contributions

	Background
	Methodology and Expected Outcome
	Proposed Solutions
	Limitations
	State of the Art
	Research Plan
	Case Study
	Result of the Research Study
	Conclusion
	Future Work

