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ABSTRACT 
 

In wireless sensor networks (WSN) high-accuracy localization is crucial for both of WNS 

management and many other numerous location-based applications. Only a subset of nodes in a 

WSN is deployed as anchor nodes with their locations a priori known to localize unknown 

sensor nodes. The accuracy of the estimated position depends on the number of anchor nodes. 

Obviously, increasing the number or ratio of anchors will undoubtedly increase the localization 

accuracy. However, it severely constrains the flexibility of WSN deployment while impacting 
costs and energy. This paper aims to drastically reduce anchor number or ratio of anchor in 

WSN deployment and ensures a good trade-off for localization accuracy. Hence, this work 

presents an approach to decrease the number of anchor nodes without compromising 

localization accuracy. Assuming a random string WSN topology, the results in terms of anchor 

rates and localization accuracy are presented and show significant reduction in anchor 

deployment rates from 32% to 2%. 
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1. INTRODUCTION 
 

Localization in wireless sensor networks (WSN) is anessential and critical issue. Most WSN 

applications necessitate the location of the sensor nodes such as in environment surveillance, 
object tracking, emergency services, asset management, location-based recommendations, and 

geosocial networks [1] [2]. Knowing the location is not only necessary to identify the geographic 

origin of events, for example, the location of a fire or the location of the enemy on a battlefield 
for the deployment of troops, but it can help in various functionalities system, such as geographic 

routing, network coverage, perimeter search, topology control, and location-based information 

polling. Moreover, the availability of cheap wireless networks and the surge in adoption of 
smartphones make the location-based services (LBS) omnipresent. Indoor LBSs promise 

enormous potential for research organizations to adapt to different indoor applications such as 

emergency services and assisted health care systems [2]. 

 
One of the simplest techniques is to locate the nodes manually when they are deployed in the 

environment. However, manual localization is costly in time, due to the large number of nodes to 

be located. Another technique is to use the Global Positioning System (GPS) which provides 
highly accurate location information, but it may not be feasible for most WSN deployments such 

as indoor environment deployment [3]. 
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Since sensor nodes are energy constrained, solutions like GPS are not recommended, GPS 
components available for WSNs are very costly, exceeding almost three times the cost of a sensor 

node [4]. Likewise, in some hostile or indoor environments, GPS performance will deteriorate 

significantly and therefore will be unreliable for location [5]. Hence, various techniques and 

localization algorithms have been proposed in the literature to localize sensors in WSN [6] [7] 
[8], however, to achieve high accuracy these techniques, a high percentage of anchors whose 

location relative to a global reference axis are known a priori has to be used. Nevertheless, not 

every node of deployed WSN can be equipped with localization components, and that due to cost 
and power consumption reasons. In this work, we present a localization approach aiming to 

decrease anchor density, hence network cost, while maintaining a high localization accuracy. 

This is achieved by using the joint parameter and distance estimation approach based on 
connectivity and received signal strength. 

 

The remainder of this paper is organized as follows: related works and anchor density impact are 

discussed in section 2. In section 3, the joint parameter and distance estimation approach based 
on connectivity- RSS is summarized. Localization and simulations results are analyzed in section 

4, and a conclusion and perspectives are drawn in section 5. 

 

2. RELATED WORKS 
 

2.1. Basic Localization Methods 
 
Localization techniques are classified in different categories. Figure 1 presents the taxonomy of 

localization techniques. An anchor-based localization algorithm uses one or more anchors. These 

nodes provide location information, in the form of beacon messages, to other nodes whose 
position is unknown so that they can be located, forming a global coordinate system where the 

location of each node is estimated, hence the localization is absolute. However, in an anchor free 

technique, the sensors cooperate with their neighbors, without the use of anchors, and form a 

local coordinate system where the location of each node is estimated, hence a relative localization 
is  [7].  

 

In centralized techniques, anchors collect the measurements of the unknown node to localize and 
then send them to a central processor to calculate the position of the unknown node. Usually, this 

type is not very scalable, as the aggregation of required information such as anchor locations and 

metrics can require many node collaborations, causing unnecessary overhead and even 

congestion. While, in distributed techniques the target node can only infer its own location based 
on information collected locally, and independently. 

 

Range-based localization technique uses the measured distance/angle between nodes to estimate 
the location. Common measurements used for localizing nodes in WSNs are the RSS [7], time of 

arrival (ToA) [8], time difference of arrival (TDoA) [9], angle of arrival (AoA) [10]. However, 

range-free localization technique uses the connectivity or pattern matching method to estimate 
the location. Such as the approximate point-in-triangulation test (APIT) algorithm [12], the 

distance vector-hop (DV-Hop) algorithm [13], the centroid localization algorithm [11]. The 

advantage of using range-based techniques is that they have a high accuracy range compared to 

range-free techniques. However, these techniques are limited because they require additional 
hardware, which is expensive for large systems. While in range-free techniques, it is not 

necessary to determine distances directly; instead, they use radio connectivity to calculate the 

number of hops between nodes and estimate the location using geometry methods. Certain 
advantages can be obtained by using these techniques which do not require special hardware 

support; generally, they are cost effective, mainly to the detriment of the level of precision [14]. 
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The fingerprinting technique or scene analysis is another branch of localization technique. It uses 
the signatures, and is based on a study campaign conducted in the environment where the 

location system works. In this method the signal characteristics obtained from a set of locations 

are catalogued in a first phase, called off-line phase, aiming to build the signature database. 

Several types of signatures [23] can be used: the powers, angles of arrival, arrival time, 
broadband parameters such effective delay spread or the number of reflected paths of signals 

received from the fixed base stations. In the second phase called the real time phase, the locations 

of the node are estimated by comparing the nodes current signal characteristics with those 
catalogued previously. However, the requirement for generating a signal signature database 

makes this technique a laborious collection of data during scene analysis or even unachievable 

for the most scenarios of the WSNs especially in complex environments. 
 

RSS-based methods are ideal for low-cost and low complexity networks, since no additional 

hardware is needed. However, the exact knowledge of the propagation model is of greatest 

importance for RSS-based localization or ranging. A previous work presented a hybrid approach 
which uses the information of the range-free technique (connectivity information) in order to 

rectify the errors obtained by the range-based method and that by estimating the parameters of the 

propagation model to better map RSS measurements into inter-node distance estimation [15] 
however, the latter work does not shed light on keeping high localization accuracy with a low 

anchor density.  

 
The accuracy of localization technique is greatly affected by the number of anchors and their 

placement, playing an essential role in the cost of the network. Many studies have investigated 

optimal number and placement of anchors to increase the localization accuracy [16] [17] [18]. 

Moreover, they study optimal anchor placement in area‐based localization algorithms with the 
goal of providing the best placement that maximises accuracy. However, to the best of our 

knowledge, no work has a goal to decrease the number of anchor while keeping high localization 

accuracy. Hence, the aim of this paper is to present a localization approach with a low anchor 
density and a high localization accuracy. 

 

 
 

Figure 1.  Taxonomy of localization techniques 
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2.2. Sensor node location 
 

Given a distance measurement between a sensor node and an anchor node, the position of 

unknown node must be along the circumference of a circle (in two-dimensional space) or sphere 
(in three-dimensional space) centered at the reference node, with the radius representing the 

distance between the reference node and the sensor node. At least two reference nodes in one 

dimension, three non-collinear reference nodes in two dimensions, or four non-coplanar reference 
nodes in three dimensions are required to obtain a unique location. This process is called 

trilateration, which assumes perfect distance measurements, which is not achievable in WSNs 

because of ranging errors.  

 

2.3. Anchor Density Effect 

 

The accuracy of a localization method is governed not only by the efficiency of distance 
estimation between unknown and anchor node, but also by the number (accuracy increases with 

anchor percentage) and the position of the anchors themselves [19]. Researchers working on 

anchor based WSN localization have always been interested in the effect of number and placement 
of anchor nodes in the network [20]. They have focused on reducing the position error introduced 

by placement and percentage of anchor nodes in the network. Localization error decreases with the 

increasing of connected anchor nodes. However, increasing anchor nodes will increase the cost of 
the deployed network. The main aim in this work is to reduce anchor nodes’ percentage while 

assuring a high localization accuracy. 

 

3. CONNECTIVITY-BASED JOINT PARAMETER ESTIMATION 
 
This section summarizes the approach used to reduce anchor density which proposes a joint 

estimation scheme for the range, path-loss exponent (PLE), and inter-node distances based on the 

received signal strength (RSS) and the network’s information [15]. 
 

3.1. Assumptions  

 

Consider a homogeneous Poisson point process (PPP) in a one-dimensional WSN consisting of 𝑁 

nodes placed randomly at positions 𝑥𝑖 for 𝑖 =  1, … , 𝑁 along the deployment segment 

[𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥], with node density 𝜆 =
𝑁

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
, and having transmission ranges 𝑅𝑖  for 𝑖 =

 1, … , 𝑁. This topology is well-justified in environments that impose one-dimensional 

deployments such as narrow-vein underground mines [21], sewage or water distribution 

networks, etc. The received signal power in 𝑑𝐵𝑚 is modeled as the sum of large-scale path-loss 

and log- Normal shadowing. The received power𝑃𝑟𝑖𝑗at node 𝑖 of a signal emitted from node 𝑗 is 

modeled by [22] as determined in equation 1. 
 

𝑃𝑟𝑖𝑗(𝑑𝑖𝑗) = 𝑃 𝑟(𝑑0) −  10𝛾𝑙𝑜𝑔 (
𝑑𝑖𝑗

𝑑0
) + 𝑋𝜎 (1) 

 

Where 𝑃 𝑟(𝑑0) is the received power from any given node at the reference distance 𝑑0  =  1, 𝛾 is 

the PLE with common values ranging between 2 and 6, 𝑑𝑖𝑗is the distance separating the two 

nodes 𝑖 and 𝑗, and 𝑋𝜎 is the large-scale log-Normal shadowing with variance 𝜎2. 

 

3.2. Poisson Point Process (PPP) 

 

A uniform (homogeneous) PPP is defined in [24] as: 
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“Let 𝛬 be a locally finite measure on some metric space 𝐸. A point processes 𝛷 is Poisson on 𝐸 
if  

• For all disjoint subsets 𝐴1 ,··· , 𝐴𝑛 of 𝐸, the random variables 𝛷(𝐴𝑖) are independent 

• For all sets 𝐴 of 𝐸, the random variables 𝛷(𝐴) are Poisson” 

 

If a Poisson point process has a constant parameter, 𝜆, then it is considered a homogeneous or 

stationary PPP [25]. In fact, the parameter 𝜆 can be interpreted as the average number of points 

per unit of length, area or volume, so it is sometimes referred to as the average density.  
 

If two real numbers 𝑎 and 𝑏, such as 𝑎 ≤ 𝑏, representing points in time, belong to a PPP with 

parameter λ> 0, then the probability of 𝑛 points existing in the interval (𝑎, 𝑏] is given by equation 

2. 
 

𝑃{𝑁(𝑎, 𝑏] = 𝑛} =
[𝜆(𝑏 − 𝑎)]𝑛

𝑛!
𝑒−𝜆(𝑏−𝑎) (2) 

 

3.3. Connectivity Information 
 

Two nodes are neighbors at one hop if they are connected, hence, 𝐶𝑖𝑗  is a random variable 

presenting the connectivity information defined as in equation 3. 

 

𝐶𝑖𝑗  = {
1 𝑖𝑓 𝑃𝑟𝑖𝑗  ≥ 𝑃𝑡ℎ

0 𝑖𝑓 𝑃𝑟𝑖𝑗 < 𝑃𝑡ℎ
(3) 

 

Where 𝑃𝑡ℎ is the power detection threshold. 

 

3.4. Proposed Estimation  
 

3.4.1. PLE estimation 

 

The estimated PLE, �̅̂� , over the entire wireless sensor network will be estimated by equation 4. 

 

�̅̂� =
1

𝑁
∑ 𝛾𝑖

𝑁

𝑖=1

(4) 

 

Where, 𝛾𝑖, �̂�𝑖, �̂̅� are determined in equations 5, 6, and 7 respectively. 

 

𝛾𝑖 =
−𝑃𝑡ℎ + 𝑃𝑟(𝑑0)

10 𝑙𝑜𝑔10(�̂�𝑖)
 (5) 

�̂�𝑖 =
1

2𝜆
∑ 𝐶𝑖𝑗

𝑁

𝑗=1

(6) 

 
And 

 

�̂̅� =
1

𝑁
∑ �̂�𝑖

𝑁

𝑖=1

(7) 
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3.4.2. Distance estimation 

 

Each node 𝑖, for 𝑖 = 1, … , 𝑁, estimates its distances to its connected neighbor nodes 𝑘 ≠ 𝑖 as in 

equation (8). 

 

�̂�𝑖𝑘 = 10
𝑃𝑟(𝑑0)−𝑃𝑟𝑖𝑘

10 �̂� (8) 

 

Where Prik is the received power at node 𝑖 from node 𝑘. 

 

4. LOCALIZATION AND SIMULATIONS RESULTS 
 

4.1. Assumptions and WSN Model 
 

The approach presented in this paper consists in decreasing the numberof anchor nodes. To prove 

its efficiency, a multi-hop linear WSN of 𝑁 nodes is considered, it is deployed in a homogeneous 

environment, i.e., all nodes have a priori the same communication range 𝑅𝑖  =  𝑅 for 𝑖 =
 1, … , 𝑁 with density 𝜆. Nodes are positioned in linear topology, on a distance 𝑑 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

as shown in figure 2. However, possible extensions to 2D or 3D network topologies, beyond the 
scope of this contribution, are currently under investigation and will be addressed in future 

publications. Its normalized error (NE), 𝜀𝑥, is assessed as computed in equation 9. 

 

𝜀𝑥 =
|(𝑥𝑖 − 𝑥𝑖)|

𝑥𝑖

(9) 

 

Where 𝑥𝑖 is the position in one dimension of a node 𝑖, 𝑖 = 1, … , 𝑁, and 𝑥𝑖 is its estimated 

position. 

 

 
 

Figure 2.  WSN Topology  

 

4.2. Results and Analysis 
 
Extensive simulations are conducted to show the efficiency of the proposed approach, where 

1000 topology are randomly generated following the Poisson distribution. Moreover, this is done 

for different values of PLE and 𝜎, the log-Normal shadowing standard deviation. Simulations are 

done using MATLAB. All relevant simulation parameters are listed in Table 1. 
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Table 1.  WSN Simulation Parameters Setup 

 
Parameter (Unit) Value (s) 

𝛾: PLE  (3;4) 

N: Sensor set cardinality 100 

𝜆: WSN density (average distance 

between 2 adjacent sensors) (node/m) 
1 3⁄  

𝜎: Log-Normal shadowing standard 

deviation (dB) 

(1;2;3;4;5;6) 

𝑃𝑟 (𝑑0): Received power at reference 

𝑑0 = 1 (dBm) 

-45  

𝑃𝑡ℎ: Threshold power (dBm) -90  

Anchor number (32;8;2) 

Number of topologies 1000 

 

Positions of anchors are chosen to cover the deployed network, with a step 𝜂 such as in equation 

10. 

 

𝜂 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑁𝐴

(10) 

 

Where 𝑁𝐴 is the number of anchors, unknown position is estimated using multilateration or 

bilateration in a one -dimensional deployment. 

 

Figures 3 and 4 present the cumulative density function (CDF) of normalized localization error 

for 𝛾 = 3 for both unknown homogeneous and known homogenous environment respectively for 

different values of anchor number. With the proposed strategy, until 90% of the sensors could 

estimate their position with a NE less than 0.04 while using 32 anchors which represent 32% of 

total node number in an unknown homogeneous WSN. In contrast, 78% of sensors achieve the 

same accuracy with only 2 anchors, when the WSN is unknown homogeneous a priori. 

However, 90% of sensors estimate positions with NE equals to 0.1 with 2 anchors. 

 

On the other hand, 90% of the sensors estimate their position with a NE less than 0.01 while 

using 32 anchors, while 82% of sensors achieve the same accuracy with only 2 anchors in a 

known homogenous WSN. On the other hand, 90% of sensors estimate the position with an error 

equal to 0.018 with 2 anchors.  
 

Likewise, figures 5 and 6 present CDF of normalized localization error for𝛾 = 4. Results in 

figure 5 where the WSN is unknown homogeneous show that until 90% of the sensors could 

estimate their position with a NE less than 0.012 using 32 anchors, this percentage decreases to 

83% while using only 2 anchors. Moreover, 90% of the sensors could estimate positions with a 

NE less than 0.02 with 2 anchors. Also, figure 6 shows the same results as 90% of sensors 

achieve an error of 0.03 with 32 anchors, and 76% of sensors achieve this error with 2 anchors 
in a known homogenous WSN. 

 

Results obtained show efficiency of the technique in using less anchors while maintaining high 

localization accuracy. In the example used in this case the anchor’s number is passing from using 

32 anchors to only 2 anchors with a little increase in error values, ∆𝑁𝐸 = 0.006 for 𝛾 = 3 in a 

priori unknown homogeneous WSN, ∆𝑁𝐸 = 0.008 for 𝛾 = 3 in a known homogeneous WSN, 

∆𝑁𝐸 = 0.008 for 𝛾 = 4 in a priori known homogeneous WSN and ∆𝑁𝐸 = 0.018 for 𝛾 = 4 in an 
unknown homogeneous WSN. Decreasing anchor nodes will decrease network cost which is an 

important constraint in WSN. In addition to, it can be observed that in homogeneous network the 
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localization errors are less than those obtained in an unknown homogeneous network. This shows 
the advantage of knowing a priori that a WSN is homogeneous., i.e., nodes have a priori the same 

communication range 𝑅𝑖. 

 

 
 

Figure 3.  CDF of Normalized Error for PLE=3 in an Unknown Homogenous WSN 

 

 
 

Figure 4. CDF of Normalized Error for PLE=3 in a Known Homogenous WSN 
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Figure 5.  CDF of Normalized Error for PLE=4 in an Unknown Homogenous WSN 

 

 
 

Figure 6. CDF of Normalized Error for PLE=4 in a Known Homogenous WSN 

 

5. CONCLUSIONS 
 
In this paper an anchor number optimization in localization in WSN is presented. By using the 

approach based on connectivity and network information, the method is able to localize sensors in 

a WSN with a very low number of anchors and with high accuracy. Hence, the efficiency of the 
proposed approach based on estimating channel properties to compensate the anchor number in 
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the localization process is proved. Indeed, in terms of anchor rates results show reduction in 

anchor deployment rates from 32% to 2%. This solution was derived for one-dimensional WSNs 

used in many new applications. However, extensions to two- or three-dimensional network 

topologies are under investigation. Also, other deployment assumptions are under investigation 

such as gaussian deployment. 
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