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Abstract. Group key exchange schemes allow group members to agree on a session
key. Although there are many works on constructing group key exchange schemes,
but most of them are based on algebraic problems which can be solved by quantum
algorithms in polynomial time. Even if several works considered lattice based group
key exchange schemes, believed to be post-quantum secure, but only in the random
oracle model.
In this work, we propose a group key exchange scheme based on ring learning with
errors problem. On contrast to existing schemes, our scheme is proved to be secure
in the standard model. To achieve this, we define and instantiate multi-party key
reconciliation mechanism. Furthermore, using known compiler with lattice based
signature schemes, we can achieve authenticated group key exchange with post-
quantum security.
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1 Introduction

Cryptographic key exchange protocols can establish a “secure channel” among the
participants, connected by insecure communication networks, by enabling them
agree on a session key. Through this channel, participants can transmit sensitive
data or apply other higher-level cryptographic schemes. The confidentiality of this
channel usually can be reduced to the security of the cryptographic protocols.

Since Diffie-Hellman’s two party key exchange protocol [13], the work of [22,
24] are focus on designing two-party protocols based on various hard problems
and improving their efficiency. There are many works [4, 8–11] on considering the
multi-party scenario. However, aforementioned protocols’s security are based on
classically hard problems which can be solved in polynomial time by quantum
algorithms [29].

Since the quantum resistance of lattice problems, especially the hardness of
LWE problems [7, 23, 25, 27, 28], most of the recent works [1, 6, 14, 18, 19, 26, 30]
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mainly focus on designing and improving the quality of lattice based two party
protocols. On the other hand, only a few works [2, 14] focus on designing lattice
based group key exchange( GKE) protocols, but they have their own drawbacks as
we show next.

The work of [14] is the first try of constructing lattice based key exchange
scheme, but it is lack of standard security proof. Even if the work of [2] proposed
a constant round GKE protocols base on plain LWE problem. But, their protocols
only proven secure in the random oracle model [3], which usually replaced by cryp-
tographic hash functions in a real world applications. But there exist cryptographic
schemes that are secure in the Random Oracle Model, but for which any imple-
mentation yields insecure schemes [12]. Therefore, security in the standard model
is more plausible for the cryptographic schemes. To our knowledge, designing and
modular analyzing of a group key exchange protocols in the standard model are not
considered yet. Even if a GKE scheme can be obtained by a two-party key exchange
scheme, but this approach believed to be very impractical, hence we consider the
direct construction.

1.1 Our Contributions

In this work, we analyze and construct a multi-party group key exchange protocol.
As shown in the work of [18], the key reconciliation mechanism( KRM) is necessary
for a LWE based key exchange protocols. Therefore, we first introduce the concept
of multi-party KRM and show it’s concrete instantiation. Our definition of the
multi-party KRM can be regarded as the generalization of the two-party KRM
[14, 19, 26]. In a multi-party key reconciliation mechanism, each party should own
predetermined informations to ensure that each party have a same element after
running the multi-party KRM. Its not hard to see that multi-party KRM is not
enough to get a group key exchange protocol because the correctness of KRM
need the pre-determined value( input to the KRM) satisfy some proper constraints.
Therefore, this is why we need other additional tools to get GKE. For the security,
we require that KRM’s output should random even if the transactions are exposed.

To instantiate, we designe a new multi-party key reconciliation mechanism.
Compared to a naive generalization of the two-party case [14], our instantiation
can be applied to both for odd and even modulus. Meanwhile, the previous key
reconciliation mechanism of [14] only fits for the odd modulus. Furthermore, our
design is as efficient as [14] in the two-party settings. Roughly, we have following
result.

Theorem 1.1 (informal) For the integers p, q, g such that p < q, q > p(g + 1)
and gcd(q, g) = 1, there exist a multi-party KRM that is secure and correct.

Additionally, we introduce a weaker version of GKE. In contrast to GKE, a
weak GKE only enables the participants to agree on some approximately the same
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element. Obviously, any GKE protocol is also a weak GKE, but the reverse is not
the case. Therefore, constructing this weak definition of GKE at most as hard as
constructing a general GKE.

The correctness of a weak GKE is similar to the case of GKE except the final
output of a weak GKE should belongs to some range with overwhelming probability.
But the security of weak GKE is a crux. In a GKE protocol, there is no difference
between the following two cases:(1) the adversary is given one key of the parties,
and (2) the adversary is given all parties’s keys. This is the case in a GKE, since
the correctness of GKE guarantees that all parties’s keys are equal. But this is not
the case in the weak GKE. Because in a weak GKE, the participants will obtain an
approximately the same keys. However, we define passive security of weak GKE and
present the our instantiation of weak GKE for sake of such weak GKE’s existence.

Finally, we construct a GKE in the standard model. Roughly speaking, we show
that a secure multi-party KRM and a secure weak GKE implies passively secure
GKE. Intuitively, the weak GKE ensures that each party have approximately the
same element, and then applying the multi-party KRM, each party will agree on
a same session key. The correctness of corresponding GKE can be reduced to the
correctness of the KRM and the weak GKE. The security analysis is more subtle,
and we elaborate it in section 5. Additionally, combining the previous instantiations,
we show the instantiation of the GKE.

1.2 Related Works and Comparison

There are sequence of works [1, 6, 14, 19, 26, 30] are working on designing and im-
proving the two-party KRM and authenticated key exchange schemes from lattices.

Even if the works of [14, 19, 26] designed KRM, but they only focused on two-
party case. Our KRM design is applicable for both two party and multi-party case.
Variants of above designs are submitted to the NIST post-quantum cryptography
competition. But they mainly focused on designing KEMs, and then designed two-
party key exchange protocols through this KEMs. Obviously, this approach seem
to be more centralized and heavily rely on one party. Hence we didn’t consider this
research line in designing multi-party case.

Apon et.al [2] proposed constant round lattice based GKE, but their scheme only
proven secure in the random oracle model. In contrast, our GKE protocol is proven
secure in standard model which is a more plausible security for a cryptographic
scheme.

Organizations In section 2 we present basic notations, definitions and some useful
results from literatures. In section 3 we introduce multi-party KRM and its concrete
instantiation. We define and instantiate a waker version of group key exchange
protocol in section 4. finally we construct a secure group key exchange protocol in
the standard model.
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2 Preliminaries

Notations For a real x ∈ R, denote the largest integer which smaller than x by bxc.
For any natural integer n ∈ N, the symbol [n] denotes the index set {0, 1, · · · , n−1}.
For any positive integer q, let Zq be the cyclic group {0, 1, 2, ..., q−1} with addition
modulo q. For any reals a, b, c such that a ≤ b, the shifted set c+ (a, b) denotes the
interval (a+ c, b+ c). We abuse the notions for the half closed and closed intervals
in Zq in a similar way. For any two elements x, y ∈ Zq, we let |x−y| be the value of
mink∈Z |x − y + kq|. Vectors are denoted with bold lower-case letters(e.g., a). For
any set S and n ∈ N, the set of n-dimensional vectors with entries in S is denoted
by Sn, and the set of n-by-m matrices with entries in S is denoted by Sn×m. For
any probability distribution χ with probability space Ω, the notion x

χ←− Ω mean
that x is sampled from Ω according to χ. If the probability space is clear from the
context, we simplify the notion as x ←− χ. If χ is uniform distribution, we omit it
for the sake of simplicity, e.g., x←− Ω. We say a function ε(λ) is negligible if 1

ε(λ) is

larger than all polynomial poly(λ) from some point λ0.

2.1 Group Key Exchange Protocol

In this section, we recall the concepts relevant to group key exchange and key
reconciliation mechanisms.

GKE: A Group key exchange protocol enables the participated parties agree on
a random session key. During the process, participants may run different scripts,
but after all interaction and calculation processes, they will agree on a same session
key. The security of GKE require that the agreed session key is indistinguishable
from an equal-length random string. Here we recall the definition, correctness, and
security of GKE as follow:

Definition 2.1 A Group key exchange protocol GKE consists of three algorithms
(GKE.Setup, Interact,KeyGen) as follow:

– GKE.Setup(1λ, 1N ) −→ pp : On input the security parameter λ and number of
participants N , it outputs a general public parameter pp.

– Interact(Pi, pp)i∈[N ] −→ {transi, sti}i∈[N ] : After receiving the public parameter
pp, each party Pi run its own script which calculate, receive, and broadcast data
transmitted through public tunnel. Use transi to denote the data sets received
and sent by Pi, and denote the after all state of Pi by sti.

– KeyGen(pp, Pi, {transi, sti})i∈[N ] = {Ki}i∈[N ] : On input public parameter pp,
transaction transi, party Pi computes its own session key Ki.
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Definition 2.2 (Correctness.) We say a GKE is correct if for some random
string K, the probability

Pr

 ∧
i∈[N ]

Ki=K
∣∣∣∣pp←− GKE.Setup(1λ, 1N )
{transi, sti}i∈[N ] ←− Interact(Pi, pp)i∈[N ]

{Ki}i∈[N ] := KeyGen (pp, Pi, {transi, sti})i∈[N ]


is negl(λ), where probability is taken over the randomness of KeyGen algorithm and
randomness of Interact algorithm.

For a probabilistic polynomial time algorithm A and key space K of GKE, we
define the advantage of A against GKE, denoted AdvGKE

A , as

Pr

b′=b

∣∣∣∣∣
pp←− GKE.Setup(1λ, 1N )
{transi, sti}i∈[N ] ←− Interact(Pi, pp)i∈[N ]

{Ki}i∈[N ] := KeyGen(pp, Pi, {transi, sti})i∈[N ]

b
$←− {0, 1}, if b = 0,K∗ :

$←− K, else K∗ := K0

b′ ←− A({transi}i∈[N ], pp,K
∗)

− 1

2
,

where the probability is taken over the randomness of KeyGen algorithm, random-
ness of Interact algorithm and random coin toss of b. we define the eavesdropper(
passive) security of a GKE as follows.

Definition 2.3 (Security.) We say protocol GKE is passively secure if the ad-
vantage Adv of any PPT algorithm A( eavesdropper) is negligible in the security
parameter λ, i.e., AdvGKE

A (λ) ≤ negl(λ).

If a GKE protocol remain secure in a case where the adversary capable of
completely controlling over all the communications in the network, We say GKE
is adaptively secure. Fortunately, there is a compiler [21] transforms a passively
secure GKE into an adaptive one. Note that this compiler need a secure signature
scheme. Fortunately, there are lattice based signature schemes [15–17] which are
strongly unforgeable under adaptive chosen message attack (EUF-CMA), and it’s
enough for the compiler. In other words, if there is a lattice based GKE, then we
have a lattice based athenticated GKE. Hence in this work, we mainly focus on
constructing GKE.

2.2 Gaussians and Ring LWE

Here, we recall definitions and some useful results of gaussian distributions and ring
Learning With Errors( LWE) problems.

Lattice and Gaussian. A n-dimensional lattice L is the discrete subgroup of Rn.
A lattice can be generated by n linearly independent basis B = {b1,b2, ...,bn} as
L = L(B) := {

∑n
i=1 kibi|ki ∈ Z}. For a real s > 0, the gaussian distribution func-

tion on a real x ∈ R is defined as ρs(x) = e−π
x2

s2 . For a positive matrix Σ, we extend
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the definition over a n-dimensional vector x ∈ Rn by letting ρΣ(x) = e−π‖xΣx‖2 . For
a probability distribution ρ and a S subset of ρ’s support, we let ρ(S) :=

∑
x∈S ρ(x).

For a natural number n and a discrete set S ⊂ Zn, the discrete gaussian distribution
Ds : Sn −→ [0, 1] is defined as DS,s(x) := ρs(x)

ρs(Sn) . For a polynomial a =
∑

i∈[n] aix
i,

we say a is sampled from DCoeffs
Z,s , if the coefficient vector a = (a0, a1, · · · , an−1) is

sampled from DZ,s.

ring-LWE. Before recalling the definitions of ring LWE, we first define the rings
that we work on in this paper. One thing need to be noticed that our construction
of GKE and instantiation of key reconciliation mechanisms are independent of
concrete instantiations. The reason of using ring LWE is because of its compactness
and commutativity. One can instantiate the scheme with plain LWE or any version
of learning with rounding problems following the constraints of GKE.

Let n be a power of 2, we define the polynomial ring R := Z[x]/(xn + 1) and
let Rq be the quotient R/qR for some positive integer q. For a s ∈ Rq and gaussian
parameter s, we say a pair (a, b) is sampled from the R-LWE distribution, denoted
An,q,s, if a is uniformly sampled from Rq and b = as + e for some error term e
sampled from DCoeffs

Z,s . The goal of R-LWE problem is to distinguish the samples of
An,q,s from the same number of samples of U (Rq)× U (Rq).

Definition 2.4 (ring-LWE) For any positive integers n, q and gaussian parame-
ter s, we say R-LWEn,k,q,s is hard if for all PPT adversary A, the following holds
:

Pr

b′ = b

∣∣∣∣∣
b

$←− {0, 1};
if b = 1, (ai, bi)i∈[k] ←− Akn,q,s;
else , (ai, bi)i∈[k]

$←− Rkq ×Rkq ;

b′ ←− A((ai, bi)i∈[k]);

− 1

2
≤ negl(λ),

where the probability is over the randomness of all the coin tosses.

Theorem 2.5 [20] Let α be a positive real, m be a power of 2, l be an inte-
ger, Φm(X) = Xn + 1 be the m-th cyclotomic polynomial where m = 2n, and
R = Z[X]/(Φm(X)). Let q ≡ 3 mod 8 be a (polynomial size) prime such that
there is another prime p ≡ 1 mod m satisfying p ≤ q ≤ 2p. Let also αq ≥
n1.5k0.25ω(log2.25(n)). Then, there is a probabilistic polynomial-time quantum re-
duction from O(n/α)-approximate SIVP (or SVP) to RLWEn,k,q,αq.

Above theorem shows that for the parameters satisfying the constraints in above
theorem, RLWEn,k,q,αq problem is hard if assuming the O(n/α)-approximate SIVP
is hard. Furthermore, its believed that SIVP remains hard even if the large scale
quantum computers are available. Therefore, it is reasonable to assume that the
RLWEn,k,q,αq based cryptographic schemes are post-quantum.
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3 Multi-Party Key Reconciliation

3.1 Definition

KRM: A key reconciliation mechanism enables participated parties to obtain a
key from roughly the same elements. A significant difference between KRM and
GKE is that KRM requires all the parties should have some approximately the
same elements beforehand. But a GKE not need this requirement at all. Here in
what follows, we define the multi-party KRM with its correctness and security.

Definition 3.1 A N -party key reconciliation mechanism KeyRek consist of tuples
(KeyRek.Hint,KeyRek.KeyGen), described as follow:

• KeyRek.Hint(bi)i∈[N ] −→ {hi}i∈[N ] : On input bi, each party Pi for i ∈ [N ] runs
this algorithm to obtain a hint message hi and broadcast it to other parties.

• KeyRek.KeyGen(bi, {hi}i∈[N ])i∈[N ] :−→ {Ki}i∈[N ] : On input bi and {hi}i∈[N ], each
party Pi runs this algorithm to obtain a key Ki.

where the bis are the predetermined approximately same elements.

Correctness. For a KRM, we require all the agreed keys are equal except with
negligible probability. The formal definition is as follow.

Definition 3.2 We say multi-party KeyRek is correct with respect to β if ‖bi−bj‖ ≤
β for all i, j ∈ [N ] and for some random string K, the probability

Pr

∧
i∈[N ]

Ki = K
∣∣∣∣{hi}i∈[N ] ←− KeyRek.Hint(bi)i∈[N ];
{Ki}i∈[N ] := KeyRek.KeyGen(bi, {hi}i∈[N ])


is at least 1− negl(λ), where the probability is taken over the randomness of bi.

Security. For any PPT algorithm A and key space K of KeyRek, the advantage of
A against the protocol KeyRek, denoted AdvKeyRek

A , is defined as

Pr

b′ = b

∣∣∣∣∣
{hi}i∈[N ] ←− KeyRek.Hint(bi)i∈[N ];
{Ki}i∈[N ] := KeyRek.KeyGen(bi, {hi}i∈[N ]);

b
$←− {0, 1}, if b = 0,K∗ :

$←− K, else K∗ := K0;
b′ ←− A({hi}i∈[N ],K

∗)

− 1

2
,

where the probability is taken over the randomness of bis and the random coin toss
of b. We say KeyRek is secure if the above advantage AdvKeyRek

A is negligible in the
security parameter λ. Note that bis are approximately the same elements, but it’s
unknown and random to the adversary. A secure KeyRek should reveals nothing
about Ki to the adversary except the public message hi derived from bi.
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3.2 Instantiation

Here, we instantiate the KRM in Definition3.1 with more special case in which
only one participant’s hint message is suffice for all the participants to agree on
the same session key. In below, we generalized the KRM of [14]. Our description
of KeyRek = (Hint,KeyGen) is as below where we omit the input integers q, p, g as
they are implicitly contained in both algorithms.

Construction 3.3 For the integers q, p, g such that 2 ≤ p, p(g + 1) < q and
gcd(q, g) = 1, the construction of KeyRek = (Hint,KeyGen) as follows:

Hint(K ′) −→ h : On input K ′ ∈ Z, it runs as follow:

– (1) i
$←− Z ∩ (−g

2 ,
g
2 ]

– (2) h = bp− p
qK
′ + 1

2 + p
q ic mod p

– (3) Outputs h

KeyGen(K,h) = k : On input K ∈ Z and h ∈ Zp, it runs:

– (1) k = (K + bh qpc mod ±q) mod g

– (2) Outputs k

For any integer x ∈ Z, we let (x mod ±q) be an integer in (−q2 ,
q
2 ]. In what

follows, we prove the correctness and security of above KeyRek.

Theorem 3.4 For the integer parameters as in Construction3.3, if for any K ′,K ∈
Zq, there is an integer d such that K −K ′ = dg and |dg| ≤ q p−1

2p −
g+1

2 , then we
have

KeyGen(K ′, h) = KeyGen(K,h),

where h = Hint(K ′).

Proof. Since K = dg +K ′, we re-write KeyGen(K,h) as

KeyGen(K,h) = KeyGen(K ′ + dg, h)

=

(
K ′ +

⌊
h
q

p

⌋
+ dg mod ±q

)
mod g

=

(
((K ′ +

⌊
h
q

p

⌋
mod ±q)︸ ︷︷ ︸

≤ q
2p

+ g+1
2
≤ q

2
−|dg|

+ dg︸︷︷︸
≤|dg|

) mod ±q

)
mod g.

Since |dg| ≤ q p−1
2p −

g+1
2 < q

2 , we have q
2 − |dg| ≥

q
2p + g+1

2 . So if |(K ′ +
⌊
h qp
⌋

mod ±q)| ≤ q
2p + g+1

2 , then we can remove the second mod ±q operation from the
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representation of KeyGen(K,h). That is to say, KeyGen(K,h) can be re-written as

KeyGen(K,h) =

(
K ′ +

⌊
h
q

p

⌋
mod ±q

)
+ dg mod g

=

(
K ′ +

⌊
h
q

p

⌋
mod ±q

)
mod g

= KeyGen(K ′, h)

Therefore, to compete the proof, we need to show: |(K ′+
⌊
h qp
⌋

mod ±q)| ≤ q
2p+ g+1

2 .

Replacing the h in (K ′ +
⌊
h qp
⌋

mod ±q) with explicit representation of h in
Hint, it’s easy to see the following

|(K ′ +
⌊
h
q

p

⌋
mod ±q)|

= |bK ′ + q

p
(bp− p

q
K ′ +

1

2
+
p

q
ic mod p︸ ︷︷ ︸

∈
(
κ·q− q

2p
+i,κ·q+ q

2p
+i
]

)c mod ±q|,

where κ is some integer. In addition, we have that (K ′+
⌊
h qp
⌋

mod ±q) ∈
(
−q
2p + i, q2p + i

]
,

and thus |(K ′ +
⌊
h qp
⌋

mod ±q)| ≤ q
2p + g+1

2 . This completes the proof. ut

The following theorem shows the uniformity of our KeyRek.

Theorem 3.5 For the parameters as in Construction3.3, and a uniform K, the
KeyGen(K,h) is uniformly distributed conditioned on h = Hint(K), i.e.,

Pr
K←−Zq

[KeyGen(K,h) = k|Hint(K) = h] =
1

g
,

where k ∈ Zg.

Proof. Let Hint(K, i) be the deterministic version of Hint(K)( making the implicit
randomness i ∈ Zg as an explicit input), proving following two statements is suffice
to complete the proof.

(1) For any i ∈ Zg, we have

Pr
K←−Zq

[Hint(K, i) = h] =
|T ih|
q
, and

Pr
K←−Zq

[KeyGen(K,h) = k ∧ Hint(K, i) = h] =
|T ih,k|
q

,
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where T ih and T ih,k are defined as

T ih :=

(
q

p
(p− h− 1

2
) + i,

q

p
(p− h+

1

2
) + i

]
,

T ih,κ := {x ∈ T ih|KeyGen(x, h) = κ}.

(2) For any i ∈ Zg and T ih, T
i
h,κ defined above, we have

T ih :=
⋃
κ∈Zg

T ih,κ, |T ih| = |T 0
h |, and

|T 0
h | =

∑
κ∈Zg

|T ih,κ| =
∑
i∈Zg

|T ih,k|.

This is the case, since we have

Pr
K←−Zq

[KeyGen(K,h) = k|Hint(K) = h]

=
1

g

∑
i←−Zg

Pr
K←−Zq

[KeyGen(K,h) = k|Hint(K, i) = h]

=
1

g

∑
i←−Zg

Pr
K←−Zq

[KeyGen(K,h) = k ∧ Hint(K, i) = h]

Pr
K←−Zq

[Hint(K, i) = h]

=
1

g

∑
i←−Zg

|T ih,k|
q

|T ih|
q

=
1

g

where the first and second equality is by property of probability; the third equality
is by statement (1); the last equality is by the statement (2). In what follows, we
prove (1) and (2)

Now, we prove (1). We first show Pr
K←−Zq

[Hint(K, i) = h] =
|T ih|
q as follow: From

the definition of T ih, it is easy to verify that, for any x ∈ T ih we have Hint(x, i) = h;
Furthermore, T ihs are disjoint and Zq = ∪h̄∈ZpT

i
h̄
, and thus for any x /∈ T ih, there

is some h′ 6= h such that x ∈ T ih′ and Hint(x, i) = h′ 6= h. It is obvious from the

definition of T ih,k that Pr
K←−Zq

[KeyGen(K,h) = k ∧ Hint(K, i) = h] =
|T ih,k|
q .

Next, we prove (2). Since KeyGen is deterministic algorithm of K and h, T ih,ks

are the partitioning of T ih, that is T ih = ∪κ∈ZgT ih,κ. Observing the definition of T ih,

it’s not hard to find that T ih is the shift of T 0
h ( e.g., T ih = T 0

h+i), and thus |T ih| = |T 0
h |.

To show
∑

κ∈Zg |T
i
h,κ| =

∑
i∈Zg |T

i
h,k|, verifying the existence of a bijection between
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T ih,k and T i−1
h,k−1 is suffice. This is the case, because we have |T ih,k| = |T

i−1
h,k−1| in this

case, and ∑
i∈Zg

|T ih,k| =
∑
i∈Zg

|T 0
h,k−i| =

∑
κ∈Zg

|T 0
h,κ| = |T 0

h |.

Here, we define the map f : T ih,k −→ T i−1
h,k−1 as f(x) = x − 1 and prove this

is a bijective map. We first show that for any x ∈ T ih,k, f(x) ∈ T i−1
h,k−1. From the

definition of the algorithms Hint and KeyGen, we have Hint(x−1, i−1) = Hint(x, i) =
h and KeyGen(x− 1, h) = k − 1 mod g, and thus f(x) ∈ T i−1

h,k . It’s straight that f
is bijective map. This completes the proof. ut

The following is a multi-party KRM using the Construction3.3 as a building
block.

Construction 3.6 A N -party key reconciliation mechanism KeyRek is consist of
algorithm tuples (KeyRek.Hint,KeyRek.KeyGen) as follow:

• KeyRek.Hint(bi)i∈[N ] −→ {hi}i∈[N ] : On input b0, party P0 computes h0 = Hint(b0)
and broadcast h0 to other parties, then each party Pi set hi = h0.

• KeyRek.KeyGen(bi, {hi}i∈[N ])i∈[N ] :−→ {Ki}i∈[N ] : On input bi and {hi}i∈[N ], each
party Pi runs KeyGen(bi, {hi}i∈[N ]) to obtain a key ki.

where the bis are the predetermined approximately same elements.

As described in above Construction3.6, this KeyRek is a special case of Definition3.1.
In general, we have following result.

Theorem 3.7 For the integers p, q, g such that p < q, q > p(g+1) and gcd(q, g) =
1, there exist a multi-party KRM that is secure and correct respect to q p−1

2pg −
g+1
2g .

Proof. The Construction3.6 is the witness to the existence of such multi-party
KRM. The security and correctness are simply followed from the Theorem3.5 and
the Theorem3.4. ut

4 A Weaker Version of GKE

In this section, we define a weak version of GKE, and then we show the RLWE
based instantiation.

4.1 Weak GKE

The correctness of a GKE protocol guarantees that the participated parties can have
the same session key. But, in this section, we degrade the correctness of the GKE
protocol, and we call this new degraded protocol as weak GKE. More specifically,
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at the end of a weak GKE, the correctness of the weak GKE requires that the
participants agree on an approximately the same element rather than an exactly
the same element. The definition of a weak GKE is identical to the definition
GKE( Definition 2.1), and thus we omit the formal definition here. We define the
correctness of a weak GKE protocol as follows.

Definition 4.1 (Correctness.) For a real γ > 0, we say a weak-GKE is correct
respect to γ3 if the probability

Pr

 ∧
i,j∈[N ]

‖Ki −Kj‖≤γ
∣∣∣∣
pp←− wGKE.Setup(1λ, 1N )
{transi, sti}i∈[N ] ←− wInteract(Pi, pp)i∈[N ]

{Ki}i∈[N ] := wKeyGen
i∈[N ]

(pp, Pi, {transi, sti})


is negligible, where the probability is taken over the randomness of weak-KeyGen
algorithm and randomness of weak-Interact algorithm.

The above correctness definition of a weak-GKE shows that all the agreed keys
from a weak-GKE protocol should be near each other instead of requiring them to
be equal. Intuitively, this relaxed version seems to be easily reached, and we will
show an explicit instantiation in next section.

security Here we define the security of weak GKE which is slightly different from
the security definition of GKE. Recall the security definition of a GKE protocol,
all the keys should be exactly equal, and thus there is no difference either of the
following two cases: (1) the adversary is only given a single key, or (2) the adversary
has all the keys. But in the case of weak GKE, the approximate-equality is needed,
and thus above two cases are different. Here, the adversary is asked to distinguish
the derived keys of a weak GKE from the same number of random dense keys.

For a probabilistic polynomial time( PPT) algorithm A and the key space K of a
wGKE, we define the advantage of A against the protocol wGKE, denoted AdvwGKE

A ,
as follow:

Pr

b
′= b

∣∣∣∣∣
pp←− wGKE.Setup(1λ, 1N )
{transi, sti}i∈[N ] ←− wGKE.Interact(Pi, pp)i∈[N ]

{Ki}i∈[N ] := wGKE.KeyGen
i∈[N ]

(pp, Pi, {wtransi, sti})

b
$←− {0, 1}, if b = 1,K∗i := Ki for all i ∈ [N ],

else K∗0 :
$←− K, {K∗i }i∈1,...,N−1 := K∗0 + χγ/2,

b′ ←− A({transi}i∈[N ], pp, {K∗i }i∈[N ])

−
1

2
,

where χγ/2 is a distribution bounded by γ/2, the probability is taken over the
randomness of wGKE.KeyGen, wGKE.Interact, χ and random coin toss of b. Our
security definition of a weak GKE is as follows.

3 We use the notion correct respect to γ rather than γ-correct due to the fact that the latter
usually used to imply the correctness not holds with probability γ.
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Definition 4.2 We call a protocol wGKE is passively secure if the advantage of
any PPT algorithm A( eavesdropper) against the protocol wGKE is negligible in the
security parameter λ, i.e., AdvwGKE

A (λ) ≤ negl(λ).

Note that a GKE protocol is obviously a weak GKE. We instantiate this weaker
version of GKE in the following section.

4.2 Instantiation of Weak GKE

In this section, instead of presenting a concrete instantiation of wGKE, we give a
high level description of its existence. In particular, we construct a wGKE using a
similar way as in [5, 18].

Construction 4.3 The construction of wGKE is consist of three algorithm triples
(wGKE.Setup, wGKE.Interact, wGKE.KeyGen) as follows:
wGKE.Setup(λ) : On input the security parameter λ and number of participants
N , it first choose a random ring element a, a PRF, and an obfuscated circuit C(
described in Construction 4.4),
wGKE.Interact(pp, Pi)i∈[N ]: On input public parameter pp, party Pi choose a pair

(si, ei)
χ←− R, and comput bi = a · si + ei, then broadcast bi.

wGKE.KeyGen(pp, Pi, {bi, }i∈[N ] , (si, ei))i∈[N ]: Party Pi evaluate the obfuscated cir-
cuit C on input {bj , sj , ej}j∈[N ], and let the sum of a random bounded value and
the evaluation of C as it’s session key.

Construction 4.4 Input : a, (bi, si, ei)i∈[N ], PRF:
For i =0 to n :

if bi = a · si + ei, output PRF (b1, · · · , bN ).
Otherwise output ⊥.

Hardness result of RLWE shows that bi only leaks negligible information about
the pair (si, ei). Since the ith party has exact values of (si, ei), {bj}j∈[N ], and
incorrect values of sj , ej ’s for j 6= i, the statement bk = a · sk + ek holds for k = i,
and thus it will correctly have the value PRF (b1, · · · , bN ). But those who hasn’t
any exact pair of (si, ei) unable to have PRF (b1, · · · , bN ).

5 Group Key Exchange Protocol from Ring LWE

In this section, we firstly construct a GKE protocol from a weak GKE and key
reconciliation mechanism. Then, we will show its correctness and security. After
all, we will instantiate the GKE protocol.
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5.1 construction

In this section, we present the construction of group key exchange scheme GKE =
(GKE.Setup,GKE.Interact,GKE.KeyGen) from a combination of weak group key ex-
change scheme wGKE = (wGKE.Setup, wGKE.Interact, wGKE.KeyGen) and a multi-
party key reconciliation mechanism KeyRek = (KeyRek.Hint,KeyRek.KeyGen). let λ
be the security parameter and N be the number of participants, the construction
if GKE is as follows.

Construction 5.1 The description of GKE as follows:

GKE.Setup(1λ, N) −→ pp: On input the security parameter λ and number of partic-
ipants N , it obtains pp by running wGKE.Setup(1λ, N).

GKE.Interact(pp, Pi)i∈[N ] −→ {transi, hi, sti}i∈[N ]: On input the public parameter pp,
each party Pi do the followings :

1. (transi, sti)←− wGKE.Interact(pp, Pi), and brodcast transi
2. (Ki)←− wGKE.KeyGen(transi, sti, Pi)

3. (hi)←− KeyRek.Hint(Ki), and brodcast it.

GKE.KeyGen(pp, (transi, hi, sti)i∈[N ]) = {ki}i∈[N ]: On inputs pp, (transi, hi, sti)i∈[N ]

generated from previous algorithms, it first generate Ki by running the algorithm
wGKE.KeyGen(transi, sti, Pi). Then it runs KeyRek.KeyGen(Ki, {hi}i∈[N ]) to get
ki.

Correctness. Following theorem shows the correctness of above GKE.

Theorem 5.2 The GKE protocol GKE presented in Construction5.1 is correct if
the wGKE and KeyRek are correct respect to γ.

Proof. From the correctness definition of GKE, we have following by union bound

Pr

[
∧

i,j∈[N ]
ki = kj

]
= 1− Pr

[
∧

i,j∈[N ]
ki 6= kj

]
≤ 1−N2 max

i,j∈[N ]
Pr [ki 6= kj ] .

Hence, for any i, j ∈ [N ], showing Pr[ki 6= kj ] ≤ negl(λ) is suffice to show the
theorem. To show this, we rewrite the probability Pr[ki 6= kj ] as

Pr[ki 6= kj ∧ ‖Ki −Kj‖ ≤ γ] + Pr[ki 6= kj ∧ ‖Ki −Kj‖ > γ]

≤ Pr[ki 6= kj |‖Ki −Kj‖ ≤ γ] + Pr[‖Ki −Kj‖ > γ]

Since wGKE is correct respect to γ, thus ‖Ki −Kj‖ ≤ γ holds except with negl(λ) probability. In
addition, the conditional probability of ki = kj on ‖Ki −Kj‖ ≤ γ is at least 1 − negl(λ) by the
correctness of KeyRek. Therefore we have Pr[ki 6= kj ] ≤ negl(λ). This completes the proof

ut
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5.2 Security and Instantioation

Let χγ/2 be some bounded distribution, the following theorem shows the security
of the GKE in Construction 5.1.

Theorem 5.3 The GKE protocol GKE presented in Construction5.1 is( passively)
secure assuming the( passive) security of KeyRek and security of wGKE respect to
χγ/2.

Proof. We prove the theorem by contradiction. We start by assuming the theorem
is false, that is there exists an adversary A which can break the protocol GKE, then
we will show that at least one of the following two statements holds: (1) There is a
simulator Sim1 which breaks the security of wGKE. (2) There is a simulator Sim2
which breaks the security of KeyRek. This contradict with the theorem assumption
that wGKE and KeyRek are secure, and thus the theorem holds.

To show the existence of an adversary A which can break the protocol GKE
implies one of the above two statements is true, we need following sequence of
games.

Game0 This is the ordinary GKE security game between the A and the challenger.
Game1 In this game, we modify the game so that challenger chooses K0 from uni-

form distribution instead of generating it by running wGKE.KeyGen, and then
let Ki = K0 +χγ . Here we also require χ be some distribution bounded by γ/2
except with negligible probability.

Game2 In this game, we change the way that the challenger compute the challenge
key k∗. Here the challenge key k∗ is chosen randomly instead of generating it
by using KeyRek.KeyGen.

In what follows, we show the advantage of A in the Game0, denoted AdvGame0
A ,

is upper bounded by the advantage of corresponding algorithms(AdvwGKE
Sim1 and

AdvKeyRek
Sim2 ) plus a negligible function in security parameter λ. By our assumption,

AdvGame0
A is noticeable, therefore AdvwGKE

Sim1 or AdvKeyRek
Sim2 is non-negligible, and this

is what we want to prove. Now, we show it by following lemmas.

Lemma 5.4 AdvGame0
A ≤ AdvGame1

A + AdvwGKE
Sim1 .

Proof. The algorithm Sim1 works as follows:

At the beginning of the game, algorithm Sim1 is given (pp, {transi,K∗i }i∈[N ])
from its challenger, where pp is the public parameter of wGKE, transis are the
transactions and K∗i s are derived keys of the wGKE if the challenger’s coin toss

b = 1, and K∗0 :
$←− K, {K∗i }i∈1,...,N−1 := K∗0 + χγ/2 otherwise. Then, Sim1 com-

putes hi := KeyRek.Hint(K∗i ) for all i ∈ [N ], k∗ := KeyRek.KeyGen(K0, {hi}i∈[N ]),
and send (pp, {transi, hi}i∈[N ], k

∗) to the adversary A. At the end of the game,
after receiving the A’s guessing bit b′ ∈ {0, 1}, Sim1 outputs b′ as its guess of b.
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If the challenger’s coin toss b = 1, then Sim1 perfectly simulate the view of A
as in Game0. Otherwise, Sim1 simulates the view of A as in Game1. Therefore, the
lemma follows.

ut

Lemma 5.5 AdvGame1
A ≤ AdvGame2

A + AdvKeyRek
Sim .

Proof. The algorithm Sim2 runs as follows:

At the beginning of the game, algorithm Sim2 is given ({hi}i∈[N ],K
∗) from

its challenger, where hi = KeyRek.KeyGen(Ui) for uniformly distributed Uis
such that ‖Ui − Uj‖ ≤ γ,∀i, j ∈ [N ]. The key K∗ is generated by the al-
gorithm KeyRek.KeyGen(U0, {hi}i∈[N ]) if the challenger’s coin toss b = 1 and
generated by randomly if b = 0. Then, Sim2 obtain (pp, {transi}i∈[N ]) by run-
ning wGKE.Setup and wGKE.Interact. Next, Sim2 let k∗ := K∗ and sends
(pp, {transi, hi}i∈[N ], k

∗) to the adversary A. At the end of the game, after re-
ceiving the A’s guessing bit b′ ∈ {0, 1}, Sim2 outputs b′ as its guess of b.

If the challenger’s coin toss b = 1, then Sim2 perfectly simulate the view of A
as in Game1. Otherwise, Sim2 simulates the view of A as in Game2. Therefore, the
lemma follows. ut

Complete the proof. Since the key k∗ in Game2 is uniformly selected, then the
adversary’s advantage AdvGame2

A is zero. Furthermore, combining the above lemmas,
we have

AdvGame0
A ≤ AdvGame1

A + AdvwGKE
Sim1

≤ AdvGame2
A + AdvKeyRek

Sim2 + AdvwGKE
Sim1

≤ AdvKeyRek
Sim2 + AdvwGKE

Sim1 .

Since AdvGame0
A is noticeable, at least on of AdvKeyRek

Sim1 and AdvwGKE
Sim2 is noticiable.

This completes the proof.
ut

Instantiation. Concrete Instantiation of GKE straightly obtained by combining
the instantiations of multi-party KeyRek and wGKE from the previous sections.
Therefore, we omit the concrete description here.
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