
David C. Wyld et al. (Eds): ICAITA, CDKP, SAI, NCO, CMC, SOFT, MLT, AdNLP - 2020

pp. 213-224, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.100917

DOCPRO: A FRAMEWORK FOR BUILDING

DOCUMENT PROCESSING SYSTEMS

Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Foxit Software Inc., Albrae Street, Fremont, USA

ABSTRACT

With the recent advance of the deep neural network, we observe new applications of natural

language processing (NLP) and computer vision (CV) technologies. Especaully, when applying

them to document processing, NLP and CV tasks are usually treated individually in research

work and open source libraries. However, designing a real-world document processing system

needs to weave NLP and CV tasks and their generated information together. There is a need to

have a unified approach for processing documents containing textual and graphical elements

with rich formats, diverse layout arrangement, and distinct semantics. This paper introduces a

framework to fulfil this need. The framework includes a representation model definition for

holding the generated information and specifications defining the coordination between the

NLP and CV tasks.

KEYWORDS

Document Processing, Framework, Formal definition, Machine Learning.

1. INTRODUCTION

Business documents nowadays are usually composed of multiple types of information, such as

text, images, tables, charts, formulas. Their semantics, formats, and styles are also abundant. To
create a system to assist humans in reading, comprehension, and writing documents, there is a

need to combine various technologies for analyzing textual and graphical elements. In addition to

this, the analyzed results must be able to be stored and consumed by machines.

Document processing has been long considered an application of Natural Language Processing

(NLP) [1], such as named entity recognition, sentiment analysis, semantic relations. Another

application is to apply Computer Vision (CV) for document-layout analysis [2], which is to
determine document structure by detecting locations, bounding boundary, and types of document

elements. Another prominent CV task related to document processing is image captioning [3]. All

of these individual NLP and CV tasks are already quite common in academic research. Open
source components are also developed for many years [4, 5, 6].

To fulfill the requirements for building such a system, we propose an architecture design as a

blueprint for building a system that can process documents with rich formats, styles, and multiple
types of elements. The architecture includes (1) a document representation model definition that

can be instantiated with analyzed data and can be consumed by other software components and

(2) a customizable framework that coordinates various tasks for analyzing documents. We define
the framework with formal definitions and illustrate with examples.

http://airccse.org/cscp.html
http://airccse.org/csit/V10N09.html
https://doi.org/10.5121/csit.2020.100917

214 Computer Science & Information Technology (CS & IT)

In this paper, we firstly describe previous NLP and CV research work. We then describe the
overall architecture of the framework. Finally, we detail the document representation model and

the task coordination definition.

2. PREVIOUS WORK

Document processing is a vast area with many topics. We listed some of the topics below.

NLP has been applying to various document processing tasks. Name entity recognition (NER) is

a task of identifying the type of an entity within the text. Supervised learning approaches usually

required to prepare a dictionary or annotated datasets [7, 8]. Even this approach can create a high-

performance NER model, it is a time-consuming task and needs multi-language annotated
datasets. On the other hand, the weakly supervised approach starts entity classification with a

small dataset or rules and expanding more rules with new iterations [9].

Similar text analysis is a task to detect similarity between sentences, paragraphs, and documents.

One of the most common approaches is to calculate various types of distances between text

vector spaces [10]. The vector spaces could be calculated from terms, corpus, or knowledge [11,
12, 13].

Text classification is a task to assign a category to a document. Classification approaches are

diverse. Among others, SVM (support vector machine) demonstrates that it is an efficient
approach for document classification [14]. More recent research applies deep learning, such as

CNN [15] and CNN-LSTM [16], for document classification. Hingmire et al. [17] chain two NLP

tasks. They first apply topic modeling and text classification. This approach can provide a
categorization explanation and high accuracy at the same time.

Summarization is a task to create a shorter version of documents with primary ideas. There are

two types of output, abstractive and extractive. The abstractive summary is to generate new
sentences that are in the original documents. The extractive summary, regarded as a problem of

classification, is composed of sentences or paragraphs in the original documents. In general, the

extractive summary can be considered as a classification problem, that is, whether a sentence is a
summary sentence or not. Various approaches are proposed [18, 19]. More recent research work

applies deep learning [20, 21].

CV is applied to solve image-based information of documents. Document layout analysis detects

objects and classifies them into different categories. Recent work usually applies CNN for

analyzing document layout. Julca-Aguilar et al. propose CNN for detecting text/non-text

document elements [22].

Image captioning is a task to give a natural language description to an image. It is a relatively

new research area where the chaining of CV and NLP tasks becomes prevalent [23]. Two
common approaches are (1) capturing the main point of an image and generating a description for

it [24] and (2) generating a description of each detected object and combined the descriptions

[25]. Anderson et al. [26] combine both (1) and (2) approaches to provide different levels of
details. Grounded language acquisition is a representatively interdisciplinary field of CV and

NLP integration [27]. It requires both disciplines to map language representation to real-world

objects. Mavridis and Roy [28] define an architecture with language understanding, visual

perception, and action modules for robots and human cooperation tasks.

Computer Science & Information Technology (CS & IT) 215

Truica et al. [29] propose a data processing framework with a flexible data model with several
preprocessing techniques. Dawborn, T., & Curran, J. R. [30] propose and implement a document

model for document representation. It is relatively rare to wok from a comprehensive approach

for document processing.

In brief, to apply various NLP and CV tasks to real-world business scenarios, a unified

framework is necessary.

3. ARCHITECTURE

3.1. Overall Design

Figure 1 shows a conceptual diagram of the framework, which is called DocPro. The basic

building blocks of DocPro include several tasks for processing input documents and generating

target documents. The processing of documents creates one or more document representation
models that are designed for storing analyzed results.

Figure 1. Conceptual Diagram of the Document Processing Framework (DocPro)

We can assign multiple tasks based on business objectives. There are four types of tasks:

• Tasks to analyze the layout of documents

• Tasks to understand the textual elements of the documents

• Tasks to understand the graphic elements of the documents

• Tasks to write a document

3.2. Document Representation Model

The paper defines a document representation model to accommodate all of the necessary

information for the defined tasks with a structure for holding the following information:

• Document layout. It includes the locations and boundaries of each document element.

The types of document elements are diverse, such as footers, headers, paragraphs, charts,
tables, images, formulas, and paragraphs.

Document
Representation

Model

Source Documents

Document
Processing Tasks

CV
Task

… Validate
Task

Target Documents

NLP
Task

216 Computer Science & Information Technology (CS & IT)

• Document reading order. The semantic order of document objects of a document
• Document summary. A paragraph to describe the critical meaning of the original

documents.

• Document metadata. Information extracted from documents, such as dates, time, person

names, location names, organization names, and as such.

• Document text. All of the textual data of a document originated from various document

elements, such as paragraphs, image captions, table captions.
• Document graphical description. Textual description of graphical elements. Data can be

from image and chart captions already written in a document or decoded from image

pixels by machines.

Document Element

Document Section

NamedEntity

Document

Document Metadata

ElementID

Location

Size

Reading Order

SectionID

Section Order

EntityID

Type

Value

Elements

DocumentID

SectionsMetadataID

Value MetadataSet

NamedEntities

Section

Value

Figure 2. The Core Model Definition of DocPro

The definition of the model consists of two parts. The first is the Core Model definition, a

lightweight and concise, and serves as the base model for extending. Figure 2 shows its

definition. The central class is the Document entity, which represents a single document. The
Document Metadata entity stores a piece of meta-information of a document. The NamedEntity

represents all detected entity names, such as person names, location names, and organization

names. The Document Section is a sematic segment for holding document elements. The
Document Element is an object of a document like an image or a chart.

We can define a new model definition based on the Core Model definition to support other
specific scenarios. Figure 3 shows an extended model definition. In this extended version, there

are several entities extended from the core model. The Lable and Category entities extended from

the Document Metadata entity for holding the labels and category information of a document.

The Image, Formula, Header, Footer, Chart, and Table entities are all extended from the
Document Element entity. The Page entity extended from the Document Section entity, which

represents a page of a document, which also holds many different Document Element entities like

images, formula, header, footer, charts, and tables. From the above description, we can conclude
that this extended model definition could represent a book or an academic paper. Both layout

information and semantics information of books and articles are defined.

Computer Science & Information Technology (CS & IT) 217

Image

Page

NamedEntity

Document

Label

Category

Document Metadata

Footer Header

ImageCaptioning

Text Block

Document Section

Chart

Document Element

Table

Formula

Summary

ImageID

SectionID

EntityID

Type

Value

Images

DocumentID

Sections

LabelID

Labels

NamedEntities

Section

CategoryID
Category

MetadataID

Value

FooterID HeaderID

ImageCaptioningID

TextBlockID

SectionID

Section Order

Formula

ChartID

Tables

Charts

ElementID

Location

Size

Reading Order

Value

ChartID

Header

Footer

FormulaID

Text Blocks

Name

SummaryID

Figure 3. The Extension Model Definition for Standalone Document

Figure 4. The Extension Model Definition for Cross-Document Knowledge Correlation

218 Computer Science & Information Technology (CS & IT)

Figure 4 is an Extension Model Definition for describing several documents correlated by some

topics. A document could have one or more topics, where each topic represented by a Topic

class. A topic is associated with some text excerpts, defined as the Text Excerpt entity. A topic

associated with one or more documents models the correlation among documents. With this
definition, we can model a knowledge map with many topics discovered from multiple

documents.

Figure 5. The Extension Model Definition for Contracts

Figure 5 is another Extension Model definition defined for a more specific domain – contract

review. Contract tasks are essential activities of any business. The tasks might include contract

monitoring, reviewing, and drafting [29]. This model is also defined based on the Core Model
shown in Figure 2. The central component becomes the Contract entity inherited from the

Document entity. The Clause entity is to model contract articles and clauses. A clause consists of

one or more sections, which are represented by the Section entity. The Text Block entity models
the textual description of a section. Special items, such as recitals and preambles, can also be

described by the Clause and section entities.

Temporal information is modeled by the Date class, which can hold contract start, termination,

effective dates. The Value entity contains financial information. The Period entity represents the

number of days a contract is valid. Inheriting from the NamedEntity entity represents other

important information like contracting parties, governing law, and jurisdiction.

We can observe from the description above that the document representation model is

beneficial for many business scenarios. One exemplified scenario is to create a tool for

editing scanned documents with the information above. Another scenario can be business

activity automation, like contract monitoring and review. With such core and extension

model definitions, machines could streamline the decision-making process based on

document contents.

4. DOCUMENT PROCESSING COORDINATION FRAMEWORK

In this section, we describe a framework for coordinating various types of tasks for analyzing

documents with formal definitions and examples.

Computer Science & Information Technology (CS & IT) 219

The limitation of current document processing technologies is isolated tasks as designed.

However, with the rich format, styles, and semantics of documents, the integral of document

analysis work becomes vital to anyone who wants to create any document processing system.

Another critical factor in designing the framework is that the types of tasks do not limit to
machine learning implementation. We do not consider that all of the tasks for solving document

processing problems would belong to the machine learning type. Therefore, the logic within each

task is varied, including tasks like machine learning type for predictive work, deterministic
computation type for analysis, and rule-based type for reactive responses.

The framework defines the five types of elements:

• Data source

• Tasks

• Model

• Checker

• Process

A task consumes one or more documents emitted from a data source. A checker is a task to

validate and verify the current status of models. A model is an instance for representing the

analysis results of a document representation, defined in the previous section. A process is a
series of connected tasks and checkers.

The framework does not specify formats of source documents. They can be PDF, MS Word,
images, or others. The logic of tasks can be various, such as machine learning, rule-based, and

even simple deterministic procedure. Each task should provide new information with more details

and might create a new model or update existing a model with more accurate information.

Checkers are tasks designed explicitly for validating models. Checkers are attached to a model or

can be attached to elements of a model for checking the whole model or parts of the model.

Tasks and checkers can be chained together to react to the update of a model. For example, after

an OCR task updates a model, a checker is triggered to check if adding new paragraphs and

executing a task to classify the document into a category. Another checker checks if a document
category is an employment contract and executes a new task for automatically reviewing contract

contents by pre-defined rules.A process manages these chained tasks, checkers, documents, and

models.

