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ABSTRACT 
 

Quantum clustering (QC), is a data clustering algorithm based on quantum mechanics 

which is accomplished by substituting each point in a given dataset with a Gaussian. The width 

of the Gaussian is a 𝜎 value, a hyper-parameter which can be manually defined and 
manipulated to suit the application. Numerical methods are used to find all the minima of the 

quantum potential as they correspond to cluster centers. Herein, we investigate the 

mathematical task of expressing and finding all the roots of the exponential polynomial 

corresponding to the minima of a two-dimensional quantum potential. This is an outstanding 

task because normally such expressions are impossible to solve analytically. However, we prove 

that if the points are all included in a square region of size 𝜎, there is only one minimum. This 

bound is not only useful in the number of solutions to look for, by numerical means, it allows to 

to propose a new numerical approach “per block”. This technique decreases the number of 

particles (or samples) by approximating some groups of particles to weighted particles. These 

findings are not only useful to the quantum clustering problem but also for the exponential 

polynomials encountered in quantum chemistry, Solid-state Physics and other applications. 
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1. INTRODUCTION 
 
The primary motivation for this work stems from an important component of the area of 

information retrieval of the IT industry, namely data clustering. For any data of a scientific nature 
such as Particle Physics, pharmaceutical data, or data related to the internet, security or wireless 

communications, there is a growing need for data analysis and predictive analytics. Researchers 

regularly encounter limitations due to large datasets in complex simulations, in particular, 

biological and environmental research. One of the biggest problems of data analysis is data with 
no known a priori structure, the case of “unsupervised data” in the jargon of machine learning. 

This is especially germane to object or name disambiguation also called the “John Smith” 

problem [1]. Therefore data clustering, which seeks to find internal classes or structures within 
the data, is one of most difficult yet needed implementations.  

 

It has been shown that the quantum clustering method (QC) [2,3] can naturally cluster data 

originating from a number of sources whether they be: scientific (natural), engineering and even 
text. In particular, it is more stable and is often more accurate than the standard data clustering 

method known as K-means [3]. This method requires isolating the minima of a quantum potential 
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and is equivalent to finding the roots of its gradients i.e. an expression made of exponential 
polynomials. Finding all the clusters within the data means finding all the potential minima. The 

quantum clustering method can be viewed as “dual” or inverse operation of the machine learning 

process known as a nonlinear support vector machines when using Gaussian functions are used as 

its kernel function; this machine learning approach being the very inspiration of the quantum 
clustering method [4].  

 

This is not the only problem in quantum mechanics requiring such solutions. The nodal lines of 
any given wave function characterize it with respect to internal symmetries and level of 

excitation. In general, if one arranges the eigenstates in the order of increasing energies, e.g. 𝜖1 

,𝜖2 , 𝜖3, …the eigenfunctions likewise fall in the order of increasing number of nodes; the 𝑛𝑡ℎ 

eigenfunction has 𝑛−1 nodes, between each of which the following eigenfunctions have at least 
one node [5]. In diffusion Monte-Carlo calculations for Molecules, a precise determination of the 

nodal structure of wave function yields greater accuracy for the energy eigenvalues [6,7,8]. 

Furthermore, solutions in terms of Gaussian functions involve the most developed mathematical 
“technology” of quantum chemistry (e.g. The Gaussian program [9]). This is not surprising for 

the following reasons:  

 
1. In principle, we can get all the roots of polynomial systems. However, quantum mechanical 

systems need exponentials in order to ensure a square-integrable wave function over all 

space. About an atom, the angular components over a range (0,2𝜋) can be modeled in terms 

of polynomials of trigonometric quantities such as e.g. Legendre polynomials. However, the 
radial part extends over all space requiring exponential apodization.  

 

2. Thanks to properties such as the Gaussian product theorem, Gaussian functions allow for 
exact analytical solutions of the molecular integrals of quantum chemistry [10,11,12].  

 

3. In general, for small atoms and molecules, the nodal lines can be modeled as nodes of 

polynomial exponentials [13,14,15].  
 

More recently, in the area of low temperature Physics (including superconductors), clustering 

within machine learning has been used in finding phases and separating the data into particular 
topological sectors [16,17,18]. High accuracy of the clustering is crucial in order to precisely 

identify transition points in terms of e.g. temperature or pressure.  

 
To reiterate, any insight concerning the isolation of all the roots or nodal lines of polynomial 

exponentials is useful for quantum clustering and computational quantum chemistry and 

condensed matter Physics and data analysis. This has applications in all cases for any given 

function covering all space in principle but whose extrema and/or roots are in a finite local region 
of space. 

 

1.1. Statement of the Problem 
 

Consider a set of particles (𝑋𝑖)𝑖=1..𝑁, the quantum clustering is a process that detects the clusters 

of the distributed set (𝑋𝑖)𝑖=1..𝑁 by finding the cluster centers. Those centers are the minima of 
the potential energy function defined by [2,3]:  

 

1

2𝜎2
1

∑ 𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2𝑁
𝑖=1

∑(

𝑁

𝑖=1

𝑋 − 𝑋𝑖)
2𝑒

−
(𝑋−𝑋𝑖)

2

2𝜎2                (1) 
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such that 𝑋∈𝑅2. This function results from injecting a Parzen window into the Schrödinger wave 
equation [2,3] and balancing the resulting energy. Other methods based on energy variation may 

also be instructive [19]. The minima of this potential provides the cluster centers for a given 

standard deviation 𝜎. As stated before, we limit ourselves to two dimensions. This method is 

more stable and precise than the standard K-means method [3].  
 

Moreover, and in contradistinction to other data clustering methods, the determination of the 

parameter 𝜎 gives a number of extrema. The number of minima is not determined beforehand but 
obtained numerically.  

 

One main difficulty is to determine the minima of the potential energy. Nowadays, the technique 

used to approach the minima is through the gradient descent or the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms [3]. Some investigations have been made to improve the detection of 

clusters via the potential energy function. For instance, in 2018, Decheng et al. [20] improved the 

quantum clustering analysis by developing a new weighted distance once a minimum had been 
found. Improvements are needed to capture all the minima efficiently. 

 

The present work consists, Subection 2.1, in simplifying the derivatives of the potential energy 
function such that the minima can be determined by some solution of a system of equations. 

Finding the extrema (minima, maxima and saddle points) of the function (1) is equivalent to 

solving a system 

              

{
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
                  (2) 

 

where 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are bivariate exponential functions which can be expressed as 

polynomial in 𝑥, 𝑒𝑥, 𝑦 and 𝑒𝑦. In this scenario, the degrees of 𝑀 and 𝐿 in 𝑥 (respectively in 𝑦) are 

one. In Subsection 2.2, the implicit functions of 𝑀 = 0 and 𝐿 = 0 are investigated and the 
ongoing Crab example is presented Subsection 2.3. Section 3, A new block approach is 

presented. The aim of this new method is to reduce memory and computation costs. The main 

formal result is given Subsection 3.1. We prove that the function (1) has only one minimum if the 

set of particles (𝑋𝑖)𝑖=1..𝑁 are all included in a square of side 𝜎. Then, we propose a method based 
on this result and a block approach to capture all the minima in a more efficient way. The 

presentation of benchmarks closed Section 3. Finally, we conclude Section 4.  

 

2. PROBLEM REDUCTION AND FIRST ANALYSIS 
 

In this section, we transform the minimization problem of the potential energy function (1) to the 

resolution of a system of two equations in two variables and 2𝑁 parameters, namely the particles 

coordinates (𝑋𝑖)𝑖=1..𝑁.  

 
2.1. Problem reduction  
 

It is known that the value of 𝜎 has a crucial role on the number of minima: the greater the value 

of 𝜎, the smaller the number of minima. To simplify the potential energy function, we denote 

𝑌 =
𝑋

√2𝜎
. This variable change remove 𝜎 from the function. Discussion of 𝜎 will be presented at 

the end of this section. 

 
We get  
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1

2𝜎2
1

∑ 𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2𝑁
𝑖=1

∑ (𝑁
𝑖=1 𝑋 − 𝑋𝑖)

2𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2 =
1

∑ 𝑒−(𝑌−𝑌𝑖)
2𝑁

𝑖=1

∑ (𝑁
𝑖=1 𝑌 −

𝑌𝑖)
2𝑒−(𝑌−𝑌𝑖)

2
                        (3) 

 

where for all 𝑖, 𝑌𝑖 =
𝑋𝑖

√2𝜎
. We denote this equation ℎ(𝑌). 

 

Theorem 1.  The extrema 𝑌 = (𝑥, 𝑦) of function ℎ(𝑥, 𝑦) =
1

∑ 𝑒−(𝑌−𝑌𝑖)
2𝑁

𝑖=1

∑ (𝑁
𝑖=1 𝑌 − 𝑌𝑖)

2𝑒−(𝑌−𝑌𝑖)
2
 

satisfy the system of the following two bivariate functions: {
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
 with 𝑌𝑖 = (𝑥𝑖 , 𝑦𝑖) for all 

𝑖 = 1. . 𝑁 and  

 

𝑀(𝑥, 𝑦) =∑𝑒−2𝑥𝑖
2−2𝑦𝑖

2

𝑁

𝑖=1

𝑒4𝑥𝑖𝑥+4𝑦𝑖𝑦(𝑥 − 𝑥𝑖) +∑∑𝑒−𝑥𝑖
2−𝑦𝑖

2

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑒−𝑥𝑗
2−𝑦𝑗

2

𝑒2(𝑥𝑖+𝑥𝑗)𝑥+2(𝑦𝑖+𝑦𝑗)𝑦

= 0   (4) 
 

and  

 

𝐿(𝑥, 𝑦) = ∑ 𝑒−2𝑥𝑖
2−2𝑦𝑖

2𝑁
𝑖=1 𝑒4𝑥𝑖𝑥+4𝑦𝑖𝑦(𝑦 − 𝑦𝑖) +

∑ ∑ 𝑒−𝑥𝑖
2−𝑦𝑖

2𝑁
𝑗>𝑖

𝑁
𝑖=1 𝑒−𝑥𝑗

2−𝑦𝑗
2

𝑒2(𝑥𝑖+𝑥𝑗)𝑥+2(𝑦𝑖+𝑦𝑗)𝑦 = 0  (5) 

 

Remark: We will also use the shortest expression: 

 

𝑀(𝑥, 𝑦) =∑(

𝑁

𝑖=1

𝑥 − 𝑥𝑖)𝐾𝑖
2 +∑𝑐𝑖𝑗

𝑖<𝑗

𝐾𝑖𝐾𝑗                     (6) 

and 

𝐿(𝑥, 𝑦) =∑(

𝑁

𝑖=1

𝑦 − 𝑦𝑖)𝐾𝑖
2 +∑𝑑𝑖𝑗

𝑖<𝑗

𝐾𝑖𝐾𝑗                      (7) 

 

with for all 𝑖, 𝐾𝑖 = 𝑒
−𝑥𝑖

2−𝑦𝑖
2
𝑒2(𝑥𝑖+𝑥𝑗)𝑥, and for all 𝑖, 𝑗, 𝑖 < 𝑗, 

 

 𝑐𝑖𝑗 = (2𝑥 − 𝑥𝑖 − 𝑥𝑗)(1 − (𝑥𝑖 − 𝑥𝑗)
2) − (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)(2𝑦 − 𝑦𝑖 − 𝑦𝑗)          (8)  

 
and  

𝑑𝑖𝑗 = (2𝑦 − 𝑦𝑖 − 𝑦𝑗)(1 − (𝑦𝑖 − 𝑦𝑗)
2) − (𝑦𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(2𝑥 − 𝑥𝑖 − 𝑥𝑗)            (9) 

 

Proof. ℎ(𝑌) is a fraction of two exponential polynomials, namely ℎ(𝑌) =
𝑓(𝑌)

𝑔(𝑌)
 with 𝑔(𝑌) =

∑ 𝑒−(𝑌−𝑌𝑖)
2𝑁

𝑖=1  and 𝑓(𝑌) = ∑ (𝑁
𝑖=1 𝑌 − 𝑌𝑖)

2𝑒−(𝑌−𝑌𝑖)
2
. 

 

Since 𝑌 ∈ 𝑅2, 𝑌 is denoted 𝑌 = (𝑥, 𝑦), then 𝑓 and 𝑔 can also be written as 

𝑓(𝑥, 𝑦) =∑(

𝑁

𝑖=1

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2)𝑒−(𝑥−𝑥𝑖)
2−(𝑦−𝑦𝑖)

2
      (10) 

and 
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𝑔(𝑥, 𝑦) =∑𝑒−(𝑥−𝑥𝑖)
2−(𝑦−𝑦𝑖)

2

𝑁

𝑖=1

             (11) 

by denoting 𝑌𝑖 = (𝑥𝑖 , 𝑦𝑖). The extrema of ℎ(𝑥, 𝑦) satisfy the system {

𝜕ℎ(𝑥,𝑦)

𝜕𝑥
= 0

𝜕ℎ(𝑥,𝑦)

𝜕𝑦
= 0

 which is 

equivalent to: 

{
 

 
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
𝑔(𝑥, 𝑦) −

𝜕𝑔(𝑥, 𝑦)

𝜕𝑥
𝑓(𝑥, 𝑦) = 0

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
𝑔(𝑥, 𝑦) −

𝜕𝑔(𝑥, 𝑦)

𝜕𝑦
𝑓(𝑥, 𝑦) = 0

               (12) 

 

since 𝑔(𝑥, 𝑦) ≠ 0 everywhere. 
 

The formal computation of the equations of the last system gives expressions which can be 

divided by 2𝑒−𝑥2−𝑦2. We finally obtain Theorem 1. ◻  

 

2.2.  Cylindrical decomposition 
 

For a given set of particles (𝑌𝑖)𝑖=1..𝑁 = (𝑥𝑖 , 𝑦𝑖)𝑖=1..𝑁, the solutions of System (1) correspond to 

the intersection between the implicit functions of 𝑀(𝑥, 𝑦) = 0 and those of 𝐿(𝑥, 𝑦) = 0 (see 

Figure 1 for the example of crab with 𝑁 = 200). An analysis on branches which will be detailed 

in a further work give the following result: Let us denote 𝑦𝑚𝑎𝑥 (resp. 𝑥𝑚𝑎𝑥) the index the 

greatest element of (𝑦𝑖)𝑖=1..𝑁 (resp. (𝑥𝑖)𝑖=1..𝑁) such that ∀𝑖 ∈ {1,… ,𝑁} − {𝑦𝑚𝑎𝑥} 𝑦𝑦𝑚𝑎𝑥 > 𝑦𝑖. 

In the same way, we denote 𝑦𝑚𝑖𝑛 (resp. 𝑥𝑚𝑖𝑛) the index the smallest element of (𝑦𝑖)𝑖=1..𝑁 (resp. 

(𝑥𝑖)𝑖=1..𝑁) such that ∀𝑖 ∈ {1,… ,𝑁} − {𝑦𝑚𝑖𝑛} 𝑦𝑦𝑚𝑖𝑛 < 𝑦𝑖. 

 
• The infinite branches of the implicit functions of 𝑀(𝑥, 𝑦) tend to 𝑥𝑦𝑚𝑖𝑛 at −∞ and 𝑥𝑦𝑚𝑎𝑥  at 

+∞ 

• The infinite branches of the implicit functions of 𝐿(𝑥, 𝑦) tend to 𝑦𝑦𝑚𝑖𝑛 at −∞ and 𝑦𝑦𝑚𝑎𝑥 at 

+∞ 
 

2.3.  Crab example  
 

To illustrate our results, we use the crab data clustering example [3] using the dataset from Refs. 

[21,22]. This two dimensional case has been presented in Refs. [2,3]. This example is composed 

of four classes at 50 samples each, making a total of 200 samples i.e. particles and by taking 𝜎 =
0.05, we obtain, after the variable changes described in Section 2, a set of particles for which the 

𝑥 and 𝑦 coordinates (𝑥𝑖)𝑖=1..200 and (𝑦𝑖)𝑖=1..200 satisfy 𝑥𝑚𝑖𝑛 = 150, 𝑥𝑚𝑎𝑥 = 65, 𝑦𝑥𝑚𝑎𝑥 =
−0.3190, 𝑦𝑥𝑚𝑖𝑛 = 0.3640, 𝑦𝑚𝑖𝑛 = 35, 𝑦𝑚𝑎𝑥 = 105, 𝑥𝑦𝑚𝑎𝑥 = 0.0038, 𝑥𝑦𝑚𝑖𝑛 = −0.7941. 

 

The curve 𝑀(𝑥, 𝑦) = 0 is shown in red and the curve 𝐿(𝑥, 𝑦) = 0 is shown in green. The 

intersection between the red and the green curves corresponds to the extrema of . 
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Figure 1: Crab example with 𝜎 = 0.05: (a) the set of points (𝑥, 𝑦)𝑖, and the implicit curves of 𝑀(𝑥, 𝑦) = 0 

and 𝐿(𝑥, 𝑦) = 0. (b) the limits of implicit curves. 

 

Using the Maple computer algebra system [23], we obtain one maximum, four minima and four 

saddle points. Table 1 gives the approximation of the solutions in the 𝑌 base and in the 𝑋 base 
which is the initial base. 

 
Table 1: Extrema of the potential energy function (1) for 𝜎 = 0.05 

 

 
 
 

Numerically, this variable change gives the advantages of a normalization of the values. 
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Figure 2: Crab clusters produced by using the minimum Euclidean distance from the minima (𝜎 = 0.05) 

 
The clusters produced by using the minimum Euclidean distance from the minima are shown 

Figure 2. For larger 𝜎, the number of solutions decreases and hence, a coarser clustering is found. 

In Figure 3, two different values of 𝜎 are given. For 𝜎 = 0.075, there are two minima, whereas 

for 𝜎 = 0.1, only one solution exists which corresponds to a minimum. Table 2 gives the values 
of the corresponding minima. 

 

 

 
 

Figure 3: Crab example: t set of points (𝑥, 𝑦)𝑖. and the implicit curves. (a) For 𝜎 = 0.075 (b) For 𝜎 = 0.1 
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Table 2: minima of the potential energy function (1) with respect to σ 

 

 
 

Table 3: range of  σ with respect to the number of clusters 

 

 
 

A deeper analysis is provided by Table 3. It gives for some 𝜎 ranges the resulting number of 

clusters. It shows that the non trivial number of clusters is more likely 4 because the 

corresponding 𝜎 range is the widest.  

 
This first example of 200 samples can be fully solved numerically but the corresponding function 

𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are sums of 20100 monomials in 𝑥, 𝑦, 𝑒𝑥 and 𝑒𝑦. The size of 𝑀 and 𝐿 is an 

issue and the aim of the following section is to reduce the size of 𝑀 and 𝐿 while maintaining a 

good approximation of minima. 
 

3. THE BLOCK APPROACH 

 

In this section, we present a new numerical approach per block. First, we present the algebraic 
property needed to develop the new algorithm presented theoretically in the second subsection 

and algorithmically in the third subsection. Finally the Crab example is revisited and some other 

benchmarks are presented.  
 

3.1. 𝝈 estimations  
 

We have seen (Table 3) that the 𝜎 value is of crucial importance to the number of minima. The 

greater 𝜎 is, the smaller the number of minima. But obviously the number of minima also 

depends on the data. In this subsection, we link the value of 𝜎 with the values of the initial data in 

order to obtain a bound from which the number of minima is one. 

 
Theorem 2.  Consider a set of particles (𝑋𝑖)𝑖=1..𝑁 where for all 𝑖 = 1. . 𝑁, 𝑋𝑖 = (𝑣𝑖 , 𝑤𝑖), the 

potential energy function 
1

2𝜎2
1

∑ 𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2𝑁
𝑖=1

∑ (𝑁
𝑖=1 𝑋 − 𝑋𝑖)

2𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2 has only one minimum for 𝜎 =

𝑚𝑎𝑥(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛). 
To complete this proof, we use the variable changes proposed  in Section 2 and we prove the 

equivalent property:  System (2) {
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
 has only one solution if the set of points 

(𝑥𝑖 , 𝑦𝑖)𝑖=1..𝑁 lies in a square of side 
1

√2
. The proof is technical and the general idea is as follows: 

We first normalized and centralized System (2) into {
𝑀𝐶(𝛼, 𝛽) = 0

𝐿𝐶(𝛼, 𝛽) = 0
. Secondly, we prove that this 
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last system has at most one minimum. Then we prove that at least one implicit curve of 𝑀𝑐 = 0 

(resp. 𝐿𝑐 = 0) lies in the normalized square. Finally we conclude to the unicity of the minimum. 

 
For instance, in the crab example, 𝑚𝑎𝑥(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) = 0.297 and without any 

computation, we know that if 𝜎 ≥ 0.297, the function (1) has exactly one minimum. 

 

To serve our new block method presented next subsection, we give another formulation of 

Theorem 2 as a corollary. 

Corollary 1.  The bivariate function 
1

2𝜎2
1

∑ 𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2𝑁
𝑖=1

∑ (𝑁
𝑖=1 𝑋 − 𝑋𝑖)

2𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2  has only one 

minimum if the set of points (𝑋𝑖)𝑖=1..𝑁 are all included in a square of side 𝜎. 
 

3.2.  System approximation construction  
 

In the general case of 𝑁 particles, the functions 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are sums of 
𝑁(𝑁+1)

2
 

exponential polynomials of the form (𝑥 − 𝑥𝑖)𝐾𝑖
2, 𝑐𝑖𝑗𝐾𝑖𝐾𝑗  or 𝑑𝑖𝑗𝐾𝑖𝐾𝑗 . We recall System (2): 

{
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
 

 

such that 

𝑀(𝑥, 𝑦) =∑(

𝑁

𝑖=1

𝑥 − 𝑥𝑖)𝐾𝑖
2 +∑𝑐𝑖𝑗

𝑖<𝑗

𝐾𝑖𝐾𝑗      (13) 

and 

𝐿(𝑥, 𝑦) =∑(

𝑁

𝑖=1

𝑦 − 𝑦𝑖)𝐾𝑖
2 +∑𝑑𝑖𝑗

𝑖<𝑗

𝐾𝑖𝐾𝑗         (14) 

where 𝐾𝑖 = 𝑒
−(𝑥−𝑥𝑖)

2−(𝑦−𝑦𝑖)
2+𝑥2+𝑦2 . 

 

When 𝑁 is large, we need a strategy to decrease the length of 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) while 
maintaining the main property of System (2) which is to define the cluster centers. 

 

Let us denote 𝑅 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] the rectangle containing all the points (𝑌𝑖)𝑖=1..𝑁. 

The basic idea is to partition 𝑅 into squares and approximate the minimum locally by considering 
for each square, only its particles. These new points will correspond to a weighted approximation 

of the particles in the square. They will therefore correspond to the weighted particles of the 

approximate system. 

 

The block construction consists of subdividing 𝑅 into 𝑘2 square blocks of length  

 
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)               (15)         

 

Since the particles are numbered from 1 to 𝑁, we denote 𝐵(𝑖) the block containing the particle 𝑖. 
𝑖 is named a representative of the block and we have: 𝐵(𝑖) = 𝐵(𝑗) if 𝑖 and 𝑗 belong to the same 

square. We denote 𝑅 a set containing exactly one representative of each non empty block. 
 

Let 𝛼 ∈ 𝑅, the function 𝑀 is reduced to the particles of the block 𝐵(𝛼) which is denoted 𝑀𝐵(𝛼) 

and 
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𝑀𝐵(𝛼)(𝑥, 𝑦) = ∑ (

𝑖∈𝐵(𝛼)

𝑥 − 𝑥𝑖)𝐾𝑖
2 + ∑ 𝑐𝑖𝑗

𝑖<𝑗,𝑖∈𝐵(𝑘),𝑗∈𝐵(𝛼)

𝐾𝑖𝐾𝑗                   (16) 

 

Similarly, 

𝐿𝐵(𝛼)(𝑥, 𝑦) = ∑ (

𝑖∈𝐵(𝛼)

𝑦 − 𝑦𝑖)𝐾𝑖
2 + ∑ 𝑑𝑖𝑗

𝑖<𝑗,𝑖∈𝐵(𝑘),𝑗∈𝐵(𝛼)

𝐾𝑖𝐾𝑗               (17) 

 

By setting 𝜎 =
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛),  Theorem 2 guarantees that the system 

governed by 

 

{
𝑀𝐵(𝛼)(𝑥, 𝑦) = 0

𝐿𝐵(𝛼)(𝑥, 𝑦) = 0
              (18) 

 

has exactly one minimum (𝑥𝐵(𝛼), 𝑦𝐵(𝛼)). 

 

Therefore, 𝑀(𝑥, 𝑦) = ∑ 𝑀𝐵(𝛼)𝛼∈𝑅 + ∑ 𝑐𝑖𝑗𝑖<𝑗,𝑗∉𝐵(𝑖) 𝐾𝑖𝐾𝑗  and we approximate 𝑀(𝑥, 𝑦) by 

𝑀𝐵𝑙𝑠(𝑥, 𝑦) =∑𝑝𝐵(𝛼)
𝛼

(𝑥 − 𝑥𝐵(𝛼))𝐾𝐵(𝛼)
2

+ ∑ 𝑝𝐵(𝛼)
𝑘∈𝑅,𝑙∈𝑅,𝛼<𝛽

𝑝𝐵(𝛽)𝑐𝐵(𝛼)𝐵(𝛽)𝐾𝐵(𝛼)𝐾𝐵(𝛽)             (19) 

 

where 𝑝𝐵(𝛼) corresponds to the number of particles inside 𝐵(𝛼). Equivalently, we approximate 

𝐿(𝑥, 𝑦) by 𝐿𝐵𝑙𝑠(𝑥, 𝑦) to obtain the block system 

 

{
𝑀𝐵𝑙𝑠 = 0
𝐿𝐵𝑙𝑠 = 0

          (20) 

 

𝑀𝐵𝑙𝑠 and 𝐿𝐵𝑙𝑠 are now sums of at most 
𝑘2(𝑘2+1)

2
 exponential polynomials and 𝑘2 << 𝑁. 

 

Remark (Limit preservation): the minima of System (2) are usually in the domain 𝑅. 

Nevertheless, the limit preservation of the approximate system is important. To do so, and 

according to Section 2, the four extrema (𝑥𝑚𝑖𝑛𝑥 , 𝑦𝑚𝑖𝑛𝑥), (𝑥𝑚𝑖𝑛𝑦 , 𝑦𝑚𝑖𝑛𝑦), (𝑥𝑚𝑎𝑥𝑥 , 𝑦𝑚𝑎𝑥𝑥) and 

(𝑥𝑚𝑎𝑥𝑦 , 𝑦𝑚𝑎𝑥𝑦) are usually not integrated into blocks and appear without any modification in 

System (20). 

  

3.3. Algorithm  

 
The main steps of the algorithm are as follows: 

 
• Input: the list of particles 𝐿 = ((𝑥𝑖 , 𝑦𝑖))𝑖=1..𝑁 and 𝑘 

• Compute 𝜎 =
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 

• For all (𝑖, 𝑗) ∈ {1. . 𝑘}2 
– Compute 𝐵 = [𝑥𝑚𝑖𝑛 + 𝑖𝜎, 𝑥𝑚𝑖𝑛 + (𝑖 + 1)𝜎] × [𝑦𝑚𝑖𝑛 + 𝑗𝜎, 𝑦𝑚𝑖𝑛 + (𝑗 + 1)𝜎], 
– Find the list 𝐿𝐵  of all the particles belonging to 𝑆, 

– If 𝐿𝐵 ≠ ∅ compute the minimum 𝑚𝐵 of the block-system {
𝑀𝐵 = 0
𝐿𝐵 = 0

 involving only 

the particles of 𝐿𝐵 , 
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– The weight 𝑝𝐵 of this minimum corresponds to the number of particles inside the 

square. 𝑝𝐵 = 𝑐𝑎𝑟𝑑(𝐿𝐵). 
• Consider the list 𝐿𝑚 of all the minima with their corresponding weight. Compute the 

minima of the corresponding block system {
𝑀𝐵𝑙𝑠 = 0
𝐿𝐵𝑙𝑠 = 0

 involving 𝐿𝑚. 

Remark: With regards to the third item: we have proved, thanks to Corollary 1, that {
𝑀𝐵 = 0
𝐿𝐵 = 0

 has 

exactly one minimum 𝑚𝐵. Indeed, the size of the block 𝐵 is 𝜎 and the construction of the 

function 𝑀𝐵  and 𝐿𝐵  involves only the particles in the block 𝐵. This minimum is often close to the 

mass center of the cluster. Finding this minimum using a Newton-Raphson method with the mass 
center as a starting point has fast convergence. Moreover, one can consider a variation of our 

approach where 𝜎 depends on an additional parameter 𝑙 ≥ 1: 𝜎 =
𝑙

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 −

𝑦𝑚𝑖𝑛). In this variation,  Theorem 2 holds since 𝑙 ≥ 1 and 𝜎 and 𝑘 can be chosen independently 

such that 
𝜎

𝑘𝑚𝑎𝑥(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛,𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
≥ 1. Therefore we can consider an approximation involving 

more blocks without changing 𝜎. 

 

3.4. Crab Example Revisited 
 

 
 

Figure 4: The first three plots (above) represent the implicit function of M in red and L in green and the set 

of particles (Original problem) with various 𝜎 = 0.0594, 𝜎 = 0.0495 and 𝜎 = 0.0330. The three remaining 

plots (below) represent the implicit function of MBls in red and LBls in green and the set Lm of the block 

minima for respectively k = 5 k = 6 and k = 9 

 

The block algorithm has been tested on the crab example [3,21,22] with varying values of 𝑘. For 

𝑘 = 5, we have reduced the minimizing problem on 200 particles to a minimizing problem on 23 

weighted particles. These new 23 particles correspond to minima of a sub-problem reduced to 

blocks. Table 4 shows for various 𝑘, the number of non empty blocks it produces (column two) 

and the value of 𝜎 =
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) (column 3). It also shows, in the fourth 
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column, the approximation of the minima of the block System (20) in the 𝑋 variable, whereas the 
sixth column shows the approximation of the minima of the original System (2). In the fifth and 

seventh column, the number of particles per clusters is given. The clusters are obtained by 

computing the Euclidean distance between a particle and the four minima namely 𝑚1, 𝑚2, 𝑚3 

and 𝑚4. A particle 𝑝 belongs to the cluster 𝑖 if |𝑝𝑚𝑖| = 𝑚𝑖𝑛(|𝑝𝑚1|, |𝑝𝑚2|, |𝑝𝑚3|, |𝑝𝑚4|). 
 

Table 4: Comparison of the minima and the clusters using the block method and the direct method 

 

 
 

We have compared the clusters produced by the direct method with 𝜎 = 5 and those produced by 

the block method with 𝑘 = 5, we observe that the result is the same except for one particle. For 

𝑘 = 6 or 𝑘 = 9, we obtain the same clusters from both methods. 

 

3.5. Benchmarks  
 
The block method can be tested on larger set of particles. In this subsection, we propose two 

other examples: 

 
• Clustering of Exoplanet data [3]. This is data from the “Extrasolar Planets Encyclopedia” 

[3,24] or more specifically Tahir Yaqoob [25]. Figure 5 is a plot of mass in Earth units 

versus the period in Astronomical Units (AU) on a log base 10 scale. The number of 

particles is 𝑁 = 1093. It shows some very complex behavior, but three rather well-defined 

groups of data can be discerned as revealed by the quantum clustering method. The block 

method with 𝑘 = 14 and 𝑙 = 1.5 gives a 𝜎 value of 0.74 and the three following minima at 

(−1.784092251, 1.149209809), (0.07545310832, 0.4043352565) and 

(0.4394030237, 3.008141919). 
  The data cluster on the lower right-hand side corresponds to the massive, short-period hot 

Jupiters that have been discovered. 
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  Figure 5: Exoplanets example. From left to right : the original data, the main characteristics of the 

corresponding block method of parameters 𝑘 = 4 and 𝑙 = 1.5, the clustering 

    

The next two examples are known to be difficult examples and the clustering outcome is usually 

imperfect. 
   

• Gionis et al.  [26] propose a method consisting of an aggregation of other approaches 

including single linkage, complete linkage, average linkage, K-means and Ward’s 

clustering. The dataset proposed in [26] has 𝑁 = 788 particles and contains narrow bridges 
between clusters and uneven-sized clusters that are known to create difficulties for the 

clustering algorithms. The aggregation method gives seven clusters. 

 

  Our quantum block method (with 𝑘 = 9, 𝜎 = 3.6889 ) gives also seven minima and thus 

seven clusters. Figure 6 Shows 6 drawing : The first drawing is the initial data. In the 

second one, the black dots corresponds to the new set of weighted particles obtained by 

using the block method with parameters 𝑘 = 9 and 𝑙 = 1 (Consequently, 𝜎 becomes 𝜎 =
3.6889). The red and green curves correspond to the implicit functions of 𝑀𝐵𝑙𝑠 and 𝐿𝐵𝑙𝑠 
(The scale has been modified here following the variable changes proposed in Section 2 The 

determination of the clusters is done here from the minima using the Euclidean distance. 
Unfortunately, it faces some difficulties and some improvements could be done by using 

spectral clustering. Here, we use a 𝜖-neighborhood graph to produce the spectral clustering 

as shown in the second line of Figure 6. The MATLAB algorithm used needs as input the 

data and the number of clusters. First, we see the level lines and the clusters of the block 
data. The last drawing gives the rebuilding of the clustering on the initial data. It shows that 

the quality of the clustering is similar to the one of the aggregation of five different 

clustering approaches (see [26]). 
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  Figure 6: Example from  [26] of 𝑁 = 788 particles. From left to right, the initial data, the main 

characteristics of the corresponding block method of parameters 𝑘 = 9 and 𝑙 = 1, the clustering using the 

Euclidean distance from the computed center (in black). Second line: The level line of the block quantum 

equation, new clustering based on the spectral clustering method on the block data, reconstruction of the 

clustering on the initial data. 

   

Unfortunately, some specific shapes such as ring-shaped or spiral-shaped clusters are challenging 

for numerous clustering methods including our QC block method. To overcome this issue, an 

approach based on optimization of an objective function, is proposed in [27] to detect specifically 
elliptic ring-shaped clusters. However, this approach is not appropriate when different kind of 

shapes coexist as for example in the case of Zahn’s compounds [28]. It also requires a skilled 

operator to visualize the clusters.  It will be a great challenge to improve the QC approach in 

order to detect such shapes. 
 

3.6. Perspectives  
 

In spite of claims to the contrary [29], even with extensions, K-means is no longer state-of-the-
art. A means of finding all the potential minima of the quantum potential and consequently the 

number of clusters for a given range of 𝜎 is an essential key feature for data clustering under 

program control without prior visualization whilst K-means and even MATLAB’s spectral 
clustering require the number of cluster centers on input and thus skilled operators. The quantum 

clustering approach yields this number for a given range. Automatic Data clustering under 

program control allows the processing of much bigger and more complex mixed datasets 

potentially providing a more robust industrial standard. It would multiply the number of 
platforms with large data collection tools such as Hadoop or MongoDB and thus a greater 

realization of patents for name of object disambiguation [1].  
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4. CONCLUSIONS 
 
Herein, we have made considerable progress in dealing with the outstanding problem of getting 

all the centers of the quantum clustering method, namely finding all the minima of the quantum 

potential of Equation (1) where 𝜎 is the standard deviation of the Gaussian distribution. The 

extrema of this potential are the roots of two coupled equations, which in principle are impossible 

to solve analytically. After simplifications, those equations become bivariate exponential 
polynomial equations and a number of useful properties have been proved. More precisely, limits 

of implicit function branches are given and the case of two particles is analytically solved. We 

also proved that the coupled equations have only one minimum if the data are included in a 

square of side 𝜎. This bound is directly useful to propose a new approach “per block”. This 
technique decreases the number of particles by approximating some groups of particles to 

weighted particles. The minima of the corresponding coupled equations are then given 

numerically by which the number of clusters is obtained. Those minima can be used as cluster 
centers. However, for some complex examples, other clustering approaches such that spectral 

clustering gives better visual results (though they still require the number of clusters on input). 

On such examples, the approach consisting in the use of the block method (for the number of 

clusters but also for the weighted particles) gives very good results. Example 3, from Gionis et al. 
shows that the quality of the clustering is similar to the one of the aggregation of five approaches. 

  

The approach used here is potentially useful for other types of exponential polynomials found in 
numerous Physical applications such as, for example, quantum mechanical diffusion Monte-

Carlo calculations, where a precise knowledge of the nodal lines ensures accurate energy 

eigenvalues 
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