
David C. Wyld et al. (Eds): CSEA, DMDBS, NSEC, NETWORKS, Fuzzy, NATL, SIGEM - 2020 

pp. 133-144, 2020. CS & IT - CSCP 2020                                                      DOI: 10.5121/csit.2020.101811 

 
PROFILING NVIDIA JETSON EMBEDDED 

GPU DEVICES FOR AUTONOMOUS MACHINES 

 

Yazhou Li1 and Yahong Rosa Zheng2 
 

1School of Computer Science and Engineering, Beihang University, Beijing, 

China 
2Department of Electrical and Computer Engineering, Lehigh University, 

Bethlehem, PA, 18015, USA 

 

ABSTRACT 

 

This paper presents two methods, tegrastats GUI version jtop and Nsight Systems, to profile 

NVIDIA Jetson embedded GPU devices on a model race car which is a great platform for 

prototyping and field testing autonomous driving algorithms. The two profilers analyze the 

power consumption, CPU/GPU utilization, and the run time of CUDA C threads of Jetson TX2 

in five different working modes. The performance differences among the five modes are 
demonstrated using three example programs: vector add in C and CUDA C, a simple ROS 

(Robot Operating System) package of the wall follow algorithm in Python, and a complex ROS 

package of the particle filter algorithm for SLAM (Simultaneous Localization and Mapping). 

The results show that the tools are effective means for selecting operating mode of the embedded 

GPU devices. 

 

KEYWORDS 
 

Nvidia Jetson, embedded GPU, CUDA, Automous Driving. Robotic Operating Systems (ROS). 

 

1. INTRODUCTION 
 
NVIDIA Jetson is a complete embedded system-on-module (SoM) device that integrates the 

CPU, GPU, PMIC, DRAM, and flash storage on a small-form-factor platform. The current Jetson 

series include Jetson Nano, Jetson TX2, and Jetson Xavier (NX and AGX), which are commonly 
used for edge computing, autonomous machines, machine learning, and artificial intelligence. An 

example application is the toy race car F1/10 which is of 1/10 of a real car size 

(https://f1tenth.org) and uses a Jetson TX2 as its computing hardware, as shown in Fig. 1, where 

the Connect Tech Obitty Carrier board is on top of the Jetson TX2 module, the power distribution 
board is on top of the VESC motor controller, and the Lidar is in the front of the car. All 

electronics are mounted on a plate above the brushless motor and battery compartment, making it 

a compact and powerful platform for testing autonomous driving algorithms. The Jetson device 
can connect to host computer via WiFi antennas and a dedicated WiFi router with static IP 

address assignment is recommended. 

 
 

 

 

 

http://airccse.org/cscp.html
http://airccse.org/csit/V10N18.html
https://doi.org/10.5121/csit.2020.101811


134 Computer Science & Information Technology (CS & IT) 

 
 

Figure 1. The F1/10 race car with Nvidia Jetson TX2, Connect Tech Obitty Carrier board, Hokuyo UMT-

30 Lidar, and VESC 6 MK-III motor controller. 

 

With the embedded GPUs, the NVIDIA Jetson systems provide the performance and power 
efficiency to run autonomous machines software faster and with less power than CPU-only 

embedded systems. However, how do we profile the performance of the Jetson devices? How do 

we use the profiling results to help improve programs written for Jetson devices? Answering 
these questions requires some serious effort because Jetson embedded devices require special 

versions of profilers than the commonly used nvidia-smi utility and Nsight Systems for desktop 

or workstations.  

 
In this paper, we explore two methods for profiling the performance of Jetson TX2 8GB: one is 

the tegrastats utility and its graphical APIs which can be used directly on the Jetson device; one is 

Nsight Systems for Tegra target systems which is used on a host computer to remote access the 
Jetson device.  

 

Several coding examples are used to bench mark the performance of Jetson TX2 under different 
working modes: a vector-add program in C or CUDA C, a wall-follow python program for f1/10 

race cars [1], and a particle filter algorithm for Simultaneous Localization and Mapping (SLAM) 

[2]. The profilers measure the power consumption, the run time of the CUDA C threads, and the 

CPU/GPU utilization under five operating modes of the Jetson TX2. The program files used in 
this paper can be found at https://github.com/li630925405/jetson-profile. 

 

1.1. Jetson TX2 Working Modes 
 

The Jetson TX2 consists of a 256-core Pascal GPU along with a CPU cluster. The CPU cluster 

consists of a dual-core NVIDIA 64-bit Denver-2 CPU and a quad-core ARM Cortex-A57. By 
configuring the 6 CPU cores and the GPU, a Jetson TX2 typically runs in five different modes, as 

shown in Table 1, where the GPU is enabled in all five modes, but at different clock speeds. The 

two types of CPUs are enabled or disabled in different configurations. Different modes show 
different speed-power performance trade-offs. It is clear that the Max-N mode is the fastest and 

consumes the most power as all CPUs and GPU are enabled and they run at their maximum 

speeds.  



Computer Science & Information Technology (CS & IT)                                  135 

 
Table 1. Working modes of typical Jetson devices configurable by the NVPmodel utility [3]. 

 

Mode Mode Name 
Denvor 2 CPU Core ARM A57 Core GPU 

Frequency # of Cores Frequency # of Cores Frequency 

0 Max-N 2 2.0 GHz 4 2.0 GHz 1.30 GHz 

1 Max-Q 0  4 1.2 GHz 0.85 GHz 

2 Max-P Core-All 2 1.4 GHz 4 1.4 GHz 1.12 GHz 

3 Max-P ARM 0  4 2.0 GHz 1.12 GHz 

4 Max-P Denver 1 2.0 GHz 1 2.0 GHz 1.12 GHz 

 

The Jetson operation modes are enabled by the Dynamic Voltage and Frequency Scaling (DVFS) 

technology and can be configured at run time by a command-line tool NVPModel [3]. For 

example, we use ‘sudo nvpmodel -m 2’ to change the working mode of a Jetson to Mode 2 Max-

P Core-All mode. The configuration of the five modes are saved in the file /etc/nvpmodel. conf 
which can also be customized to produce user flexible modes. The current mode of the Jetson is 

queried by 'sudo nvpmodel -q –verbose'.  

 

1.2. NVIDIA Profiling Tools 
 

NVIDIA profiling tools help the developers to optimize their programs and applications. The 
newly announced NVidia Nsight Systems [4], [5] supersedes the command-line nvprof and visual 

profiler NVVP tools and combine them into one unified tool. To apply it to profile Jetson 

devices, NSight Systems for Tegra target system package has to be used on the host computer 
which remote accesses the jetson device profilee. The package is part of the JetPack 4.3 

installation [6] and is installed on the host computer. Alternatively, a command-line  utility 

'tegrastats' and its graphical APIs [7], [8] are available to profile Jetson devices directly. In 
addition, user-defined functions or python wrappers may utilize the system APIs such as timer to 

profile the performance. 

 

 
 

Figure 2. profile jetson GPU status using tegrastats 

 

The tegrastats utility reports memory usage and processor usage for Jetson-based devices [7] 

similar to the Nvidia-smi utility which is not supported on Jetson. An example of tegrastats is 

shown in Figure 2, which means CPU2 and CPU3 are off, CPU1, CPU5 and CPU6 are using 6% 
of their loads, CPU4 is using 2% of its load and their current running frequency is 345 MHz. The 

details of the tegrastats output is explained in [7], but it is rather user unfriendly. The tegrastats 

output can be visualized by a tool called jetson_stats [8], a package that combines both tegrastas 
and NVPmodel into a GUI to profile and control Jetson. It contains five different tools, among 

which the jtop tool is the most useful for profiling.  

 

Nsight Systems for Tegra targets is a part of the JetPack SDK [9] for Jetson devices and is 
installed on a host computer to remotely profile the Jetson target device. Nsight Systems is a low-

overhead sampling, tracing and debugging tool for C or CUDA C programs and may not be 

effective to profile a python program. 
  



136 Computer Science & Information Technology (CS & IT) 

Therefore, we rely on the system APIs such as high resolution clock in the C++ library and 
time.time() in the python library and write custom functions and evaluate the performance of 

python code on Jetson devices. 

 

2. HARDWARE PLATFORM AND SAMPLE PROGRAMS 
 
The Jetson TX2 device in the F1/10 race car platform [1] is used to profile the example programs. 

The Jetson TX2 is flushed with the Ubuntu 18.04.4, ROS Melodic, and Jetpack 4.3 L4T 33.3.1 

packages. The F1/10 race car ROS simulator is also installed. We profile three examples on the 
f1/10 race car platform: Example 1 is the vector-add program in two versions [10]: 

vector_add.cpp and vector_add.cu. The cpp version uses the CPU cores only, while the cu 

version explicitly utilizes the GPU parallel programming APIs and memory management via 
CUDA C/C++. 

 

Example 2 is a wall follow python program [11] running on the f1/10 simulator platform [1]. As 

shown in Fig. 3, the simulator takes the map and drive information to generate the Lidar sensing 
data. It also interfaces the joy pad or keyboard inputs for control and runs the autonomous 

algorithms via the New Planners module and the /nav and /brake topics. The RViz package is 

used to visualize the race track, the car motion, and the Lidar sensing data. 
 

 
 

Figure 3. Block diagram of the F1/10 race car ROS simulator. 

 

The wall follow python program subscribes to the LidarScan data and computes the distance of 
the race car to the left or right wall, then determines the PID control parameters according to a 

pre-set distance, and publishes the Ackermann steering parameters to the /drive topic to control 

the race car. When the car receives data from the lidar, the function lidar_callback will be called 

to calculate the control signal and send it to control the car. So the speed of wall follow program 
can be represented by time consumed by lidar_callback.  

 

Example 3 is a particle filter algorithm for SLAM and is available at github [2]. The python code 
implements a fast particle filter localization algorithm and uses the RangeLibc library for 

accelerated ray casting. By specifying the range method ''rmgpu'', the program explicitly use the 

GPU to achieve fast ray casting, while other range methods, such as ''bl'', ''rm'', and ''glt'', etc., use 
the CPUs only. The bench mark performed in C++ is reprinted in Table. 2. The range method 

options can be specified in localize.launch of the particle filter package. 

 
 

 



Computer Science & Information Technology (CS & IT)                                  137 

Table 2. Different ray casting algorithms in the particle filter example [2]. 

 

Method Init time 

 (sec) 

Random queries 

Thousand/ sec 

Grid queries 

Thousand/ sec 

Memory 

(MB) 

BL 0.02 297 360 1.37 

RM 0.59 1,170 1,600 5.49 

RMGPU 0.68 18,000 28,000 5.49 

CDDT 0.25 2,090 4,250 6.34 

PCDDT 7.96 2,260 4,470 4.07 

LUT 64.5 2,160 4,850 296.6 

 

3. TEGRASTATS PROFILING PROCEDURES AND RESULTS 
 

The performance of Example 1 is profiled by three methods: the average time to run the program 
is extracted by the clock() function in cpp and cu versions of the vector_add programs; the jetson-

stats is used to extract the tegrastats results on CPU/GPU utilization and power consumption and 

graph them; and Nsight Systems is used to trace the APIs of GPU synchronization and memory 
management in details. 
 

The performance of Example 2 is evaluated by two methods: the first is to utilize a python 

wrapper with python library function time.time() to calculate time spent for each function in the 

python program; the second is to use jetson-stats to graph the CPU usage and power 
consumption. The wall-follow program runs for minutes and the python wrapper outputs more 

than 60,000 calls of each function and the time of each function run is averaged over the total 

numbers of the calls. The python wrapper is disabled when using jetson-stats to profile Example 
2. 
 

Example 3 has a built-in performance calculator and it outputs the average number of iterations 

of ray casting in the particle filter algorithms. The jetson-stats is used to profile its power 

consumption and CPU/GPU utilization.   
 

3.1. Example 1: Vector Add 
 

The two versions of vector-add programs are run on Jetson TX2 in modes 0 -- 4, respectively. 

Although all modes have the GPU enabled, only the vector_add.cu makes use of the GPU, while 

vector_add.cpp utilizes the CPU cores only. The results of the execution time is shown in Table 
2, where the time is measured by high resolution clock from the C++ library ''chrono''. Without 

utilizing the GPU, Modes 0, 2 and 4 run in similar speeds which are faster than Modes 1 and 3. 

This is because Modes 0, 2 and 4 use the Denver-2 and Modes 1 and 3 use ARM cores only. The 

example code is a single-threaded kernel and Denver 2 CPU has better single-threaded 
performance than the ARM core. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 Computer Science & Information Technology (CS & IT) 

Table 3. Power consumption of Example 1 in different Jetson modes. 

 

Mode GPU CPU power GPU power IN power 

0 No 1983 95 7151 

0 Yes 567 2315 8229 

1 No 524 95 2527 

1 Yes 190 1045 5155 

2 No 1426 95 4660 

2 Yes 379 1706 6568 

3 No 1237 95 4187 

3 Yes 331 1707 6663 

4 No 1900 95 5108 

4 Yes 521 1706 6682 

 

Utilizing the GPU, all five modes run at the similar speed as most of the processing is offloaded 
to the GPU running at similar speeds in all modes. Comparing the performance between the 

CPU+GPU and the CPU only modes, performances vary significantly in different GPU execution 

configurations, as shown in Table 3. Note that the streaming multiprocessors in Jetson TX2 is 2 
and the maximum number of thread per block is 1024. Also note that the size of the vectors to be 

added is 224. With a small number of thread per block and a small number of blocks per grid, the 

performance of the GPU version is worse than the CPU only version, as the potential of the GPU 

is under utilized and the overhead of memory management is relatively large. Let the number of 
threads per block and the number of block per grid be Nt and Nb, respectively. If we increase Nt 

or Nb such that NtNb ≥ 211, then the GPU performs faster than the CPU only version, as shown in 

Table 4. Therefore, the try and error method is used to find out the best combination of the 
numbers of threads and blocks. 
 

Table 4. Time needed to run Example 1 with different CUDA execution configurations 

 

# threads / block # blocks /grid run time (s) 
32 2 240 
128 2 71 

1024 2 15 
32 64 15 

 

The two versions of vector_add programs are also profiled by tegrastats via jtop and the results 
for Mode 1 (Max-Q) are shown in Fig. 4 and 5. Mode 1 uses all four ARM cores at 1.2 GHz 

clock rate while the GPU can run at 0.85 GHz speed. The CPU version of the program utilizes all 

four ARM cores and its GPU utilization is 0%, as shown in Fig. 4a. CPU 2 and 3 are off as they 
are the Denver 2 cores which are disabled in Mode 1. The average power consumption of the 

program in Mode 1 is 2405 miliwatts. It is interesting to note that the GPU still consumes 100 

mW power on average even though the program does not utilize the GPU. This is because the 
GPU is used by Jetson to support graphics in the operating system. 

  

The CPU utilization is further detailed by going to menu 3CPU at the bottom of the jtop window, 

as shown in Fig. 4b, where the time snap shots of the CPU utilization is captured. All four ARM 
cores run at the 1.3 GHz clock rate and CPU 1 is utilized fully at 100% at the time of the capture, 

while other three ARM cores are used occasionally. Observing the CPU graphs over time reveals 

that the four ARM cores are utilized uniformly by the ''schedutil''. 
 



Computer Science & Information Technology (CS & IT)                                  139 

 
 

(a) Overall performance of vector_add.cpp w/o using the GPU 
 

 
 

(b) CPU utilization of vector_add.cpp w/o using the GPU 
 

Figure 4. Results profiled by jtopfor vector_add.cpp program which uses the CPU only. Jetson mode 1 was 

used to run the program. 

 

In comparison, vector_add.cu utilizes the GPU almost fully at 99%, as shown in Fig. 5a. The 

CPU1 ARM core is also fully utilized, while other ARM cores are used by 10% -- 13%. The 
power consumption of the CPU+GPU mode is 2523 milliwatts which is slightly higher than the 

CPU only version. Note, jtop menu 5CTRL also provides a user-friendly interface for the 

NVPmodel utility so the user can change the Jetson operation mode and CPU/GPU clock rates 

easily. 
 



140 Computer Science & Information Technology (CS & IT) 

 
 

(a) Overall performace of vectoradd.cu utilizing the GPU 

 

 
 

(b) GPU utilization of vector_add.cu using the GPU 

 

Figure 5. Results profiled by jtop for vector_add.cpp program which uses the CPU only. Jetson mode 1 was 

used to run the program. 

 

The profiling results of vector_add.cu using Nsight Systems is shown in Fig. 6. The host 

computer runs the Nsight Systems while the Jetson TX2 is running the vector_add.cu. The host 

computer remote accesses the Jetson via SSH to profile the performance of each CPU core and 

GPU thread. It is clear that the utilization of CPU is decreased when the GPU kernel function is 
being executed. 

 

3.2. Example 2: Wall Follow Python Code 
 

The wall-follow python code is run on the f110 simulator with time.time() to calculate the time 

consumed in each function. The car is placed at the right bottom corner of the track when the 
wall-follow program starts. In all Jetson modes except Mode 4, the car completes the whole track 

without collision. The time spent on function lidar_callback is shown in Table 5. It is clear that 

Mode 4 runs the slowest because it only uses 2 CPUs, thus the car reacts slowly and collides to 
the wall easily; No differences are observed in car behaviors in other modes, although the times 

spent by modes 0 - 3 are slightly different and Mode 1 is notably slower than Mode 0, 2 and 3. 

 



Computer Science & Information Technology (CS & IT)                                  141 

 
 

Figure 6. Nishgt System profiling timeline results for Example 1 

 

Table 5. Time spent by the lidar_callback function of Example 2 in five working modes of Jetson TX2 

  

Function Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 

lidar_callback 626us 967us 511us 541us 1010us 

 

The jtop profiler results are shown in Fig. 7 with Mode 4 as an example. Since only one Denver2 

core and one ARM core are enabled in Mode 4, both of the CPU cores are utilized at 100% and 
the GPU is utilized at 10% mainly to support Rviz graphical display. 

 

 
 

Figure 7. Performance of Example 2: Wall follow python program run in Mode 4 

 

 

 
 



142 Computer Science & Information Technology (CS & IT) 

3.3. Example 3: Particle Filters 
 

The particle filter algorithm is run in the f110 simulator on the Jetson TX2 device first, and then 

run in ROS directly with the hardware. The operating Mode 0 is used for both cases. In the f110 
simulator, the car runs the wall-following algorithm through one lap of the track while the 

particle filter runs simultaneously with a way-point logger, so that the localized waypoints are 

logged in to a file as the car running through the track. When the range method is set to ''rm'' (ray 
marching), the points in the logged file are sparse, as shown in Fig. 8b, because the algorithm 

runs slow with CPU cores only. When the range method is set to ''rmgpu'' (ray marching using 

GPU), the particle filter performance is faster than the ''rm'' option, and the number of way points 

logged in the track is much higher, as shown in Fig. 8a. 
 

 
a. rm gpu 

 
b. rm 

 

Figure 8. Way points generated by ray casting methods: ray marching with or without GPU. The number of 

way points is proportional to the processing speed of the algorithm. 

 

The speed and power efficiency of Example 3 in different modes are shown in Fig. 9. Utilizing 
the GPU, the rmgpu method gains about 2x to 4x speedup over the CDDT and rm methods in all 

Jetson modes, as shown in Fig. 9a. Meanwhile, the power consumption of the rmgpu method is 

slightly more than the rm and CDDT methods running in the same operation mode, as shown in 
Fig. 9b. This demonstrates that it is beneficial to utilize the GPU when ever is possible.  

 

4. CONCLUSION 
 

This paper has investigated two profiling tools for Jetson devices using three examples that 
involve CUDA C, python or ROS packages. The two profiling tools are tegrastats and Nsight 

Systems. While tegrastats and its GUI version jtop can run directly on the Jetson devices, the 

Jetson version of Nsight Systems has to run on a host computer to remotely profile a Jetson 
devices. Jtop provides summary of the Jetson CPU and GPU utilization, power consumption and 

dynamic flow in coarse time scale, while Nsight Systems can provide detailed CPU/GPU and 

memory activities of individual threads in fine time scale. Therefore, Nsight Systems is a better 
tool for performance optimization. Performance of five working modes of Jetson TX2 has been 

compared to illustrate the capabilities of the two profiling tools. 

 






