
 

David C. Wyld et al. (Eds): ACITY, DPPR, VLSI, WeST, DSA, CNDC, IoTE, AIAA, NLPTA - 2020 

pp. 73-81, 2020. CS & IT - CSCP 2020                                              DOI: 10.5121/csit.2020.101507 

 
FPGA ROUTING ACCELERATION BY 

EXTRACTING UNSATISFIABLE SUBFORMULAS 
 

Zhang Jianmin, Li Tiejun and Ma Kefan 

 

College of Computer, National University of Defense  

Technology, Changsha, China 
 

ABSTRACT 
 
Explaining the causes of infeasibility of Boolean formulas has practical applications in various 

fields. A small unsatisfiable subset can provide a succinct explanation of infeasibility and is 

valuable for applications, such as FPGA routing. The Boolean-based FPGA detailed routing 

formulation expresses the routing constraints as a Boolean function which is satisfiable if and 

only if the layout is routable. The unsatisfiable subformulas can help the FPGA routing tool to 
diagnose and eliminate the causes of unroutable. For this typical application, a resolution-

based local search algorithm to extract unsatisfiable subformulas is integrated into Boolean-

based FPGA routing method. The fastest algorithm of deriving minimum unsatisfiable 

subformulas, called the branch-and-bound algorithm, is adopted to compare with the local 

search algorithm. On the standard FPGA routing benchmark, the results show that the local 

search algorithm outperforms the branch-and-bound algorithm on runtime. It is also concluded 

that the unsatisfiable subformulas play a very important role in FPGA routing real applications. 
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1. INTRODUCTION 
 

Many real-world problems, arising in electronic design, equivalence checking, property 
verification, automatic placement and routing and Auto Test Pattern Generation (ATPG), can be 

formulated as constraint satisfaction problems, which can be translated into Boolean formulas in 

conjunctive normal form (CNF). Modern Boolean satisfiability (SAT) solvers, such as Chaff [1] 

and MiniSAT [2], which implement enhanced versions of the Davis-Putnam-Logemann-
Loveland(DPLL) backtrack-search algorithm, are usually able to determine whether a large 

formula is satisfiable or not. When a formula is unsatisfiable, it is often required to find an 

unsatisfiable subformula, that is, a small unsatisfiable subset of the original formula. Localizing a 
small unsatisfiable subformula is necessary to determine the underlying reasons for the failure. 

Explaining the causes of unsatisfiability of Boolean formulas is an essential requirement in 

various fields, such as electronic design automation and formal verification of hardware. A 
typical paradigm is fixing wire routing in FPGAs, where an unsatisfiable subformula implies that 

the channel is unroutable. Furthermore, we are usually interested in a small explanation of 

infeasibility that excludes irrelevant information. There have been considerable researches in 

deriving the unsatisfiable subformulas. Most of previous works are complete search approaches, 
essentially on the basis of enhanced versions of the DPLL backtrack-search algorithm. However, 

existing studies have very little concern regarding unsatisfiable subformulas extraction using 

incomplete local search method. 
 

http://airccse.org/cscp.html
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The unsatisfiable sub formulas solver plays a very important role in the automatic routing tool for 
deciding the routability of FPGA devices. The Boolean-based FPGA detailed routing formulation 

expresses the routing constraints as a Boolean function which is satisfiable if and only if the 

layout is routable. The Boolean-based routers have two unique features: One is simultaneous 

embedding of all nets regardless of net ordering; the other is ability to demonstrate routing 
infeasibility by proving the unsatisfiability of the generated routing constraint Boolean function. 

The unsatisfiable subformulas can help the FPGA routing tool to diagnose and eliminate the 

causes of unroutable. In general, the unsatisfiable subformulas are extracted faster, the tool 
completes the FPGA routing process more efficiently. Therefore, a fast algorithm of deriving the 

unsatisfiable subformulas, called the resolution-based local search algorithm [3], is integrated 

into Boolean-based FPGA routing method. We have compared two optimal algorithms of 
computing unsatisfiable subformulas, respectively called branch-and-bound algorithm [4] and the 

resolution-based local search algorithm, on the standard FPGA routing benchmark. The 

evaluation results show that the local search algorithm strongly outperforms the branch-and-

bound algorithm on runtime. It is also shown that the unsatisfiable subformulas can help the tool 
to quickly diagnose the root causes of unroutability problem and eliminate the fail nets. 

 

The paper is organized as follows. The next section gives the basic definitions and notations of 
unsatisfiable subformula used throughout the paper. Section 3 surveys the related work on 

computing unsatisfiable subformulas. Section 4 introduces the principles of the Boolean-based 

FPGA routing algorithm. Section 5 describes the algorithms of computing the unsatisfiable 
subformulas. Section 6 shows and analyzes experimental results of two algorithms on the FPGA 

routing benchmark. Finally, Section 6 concludes this paper. 

 

2. PRELIMINARIES 
 
Resolution is a proof system for CNF (Conjunctive Normal Form) formulas with the following 

rule: 

0 1

0 1

( ) ( )

( )

L a L a
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where L0, L1 are disjunctions of literals. The clauses (L0a) and (L1a) are the resolving 

clauses, and (L0L1) is the resolvent. The resolvent of the clauses (a) and (a) is the empty 

clause (). Each application of the resolution rule is called a resolution step. The above resolution 

step is represented as ((L0a)( L1a)) |=( L0L1). A sequence of resolution steps, each one 

uses the result of the previous step or the clauses of the original formula as the resolving clauses 

of the current step, is called a resolution sequence. 
 

Definition 1. (Boolean Satisfiability) Given a CNF formula (V), where V  is the set of 

variables, and a Boolean function F(V): {0,1}n{0,1}, the Boolean satisfiability problem 

consists of identifying a set of assignments Mv to the variables, such that F(Mv)=1, or proving that 
no such assignment exists. 

 

Lemma 1 A CNF formula  is unsatisfiable if and only if there exists a finite sequence of 

resolution steps ending with the empty clause. 
It is well-known that a Boolean formula in CNF is unsatisfiable if it is possible to generate an 

empty clause by resolution sequence from the original clauses. The set of original clauses 

involved in the derivation of the empty clause is referred to as the unsatisfiable subformula. 
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Definition 2 (Unsatisfiable subformula) Given a formula ,   is an unsatisfiable subformula 

for   if and only if   is an unsatisfiable formula and . 

 

Observe that an unsatisfiable subformula can be defined as any subset, which is infeasible, of the 
original formula. Consequently, there may exist many different unsatisfiable subformulas, with 

different number of clauses, for the same problem instance, such that some of these subformulas 

are subsets of others. 

 
Lemma 2. The set of original clauses involved in the derivation of an empty clause is referred to 

as the unsatisfiable subformula. 

 

Definition 3 (Minimal Unsatisfiable Subformula) Given an unsatisfiable subformula  for a 

formula ,  is a minimal unsatisfiable subformula if and only if removing any clause    from 

 implies that  {} is satisfiable. 

 
For Boolean formulas in CNF, an unsatisfiable subformula is minimal if it becomes satisfiable 

whenever any of its clauses is removed. According to the definition, a minimal unsatisfiable 

subformula has two features: one is unsatisfiable, the other is irreducible, in other words, all of its 

proper subsets are satisfiable. 
 

Definition 4 (Minimum Unsatisfiable Subformula) Consider a formula  and the set of all 

unsatisfiable subformulas for : {1, 2, …, n}. Then, k  {1, 2, …, n} is a minimum 

unsatisfiable subformula iff i  {1, 2, …, n }，1  i  n: |k|  |i |. 

 
According to the definition, a minimum unsatisfiable subformula has the smallest cardinality of 

all unsatisfiable subsets of a formula. From the above definition, one may conclude that any 

unsatisfiable formula has at least one minimum unsatisfiable subformula. 

 
We may observed that, the clauses, contained in the intersection of a resolution trace and the 

original formula, belong to some unsatisfiable subformula. From the lemmas, it is concluded that 

a refutation proof contains the explanation of infeasibility of the formula. In other words, the 
causes of unsatisfiability can be derived from the resolution sequence in the sense that removing 

them will correct the infeasibility. Then we illustrate the process of extracting unsatisfiable 

subformulas from a Boolean formula according to Lemma 1 and Lemma 2. For example, a CNF 
formula is 

 

0 1 0 1 0 2 1 2( ) ( ) ( ) ( ) ( )a a a a a a a a                                 (2) 

 
The above formula is refuted by a series of resolution steps ending with the empty clause. Two 

refutation sequences to affirm the infeasibility of the formula  are shown as follows: 

 

0 0 1 1 1
1
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                  (4) 

 

From 1, the resolvent (a1) of the first resolution step serves as one of the resolving clauses of 

the second step, and the result of the second resolution step is the empty clause. Similarly, the 

other sequence 2 of resolution steps also arrives at the empty clause. According to Lemma 2, the 
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original clauses included in the proof of infeasibility belong to the unsatisfiable subformula. 
More specifically, two unsatisfiable subformulas respectively corresponding to the refutation 

proofs 1 and 2 are 

 

1 0 0 1 1( ) ( ) ( )a a a a                                                             (5) 

2 0 0 2 1 1 2( ) ( ) ( ) ( )a a a a a a                                            (6) 

 

In summary, this Boolean formula example demonstrates that the resolution-based local search 

algorithm to extract the unsatisfiable subformulas is essentially based on Lemma 1 and Lemma 2. 
 

3. BOOLEAN-BASED FPGA ROUTING ALGORITHM 
 

In electronic design automation fields, one of the motivating applications is a Boolean-based 

FPGA detailed routing formulation on island-style FPGA architecture. The Boolean-based router 
expresses the routing constraints as a Boolean function which is satisfiable if and only if the 

layout is routable. The Boolean-based routers have two unique features: One is simultaneous 

embedding of all nets regardless of net ordering; the other is ability to demonstrate routing 
infeasibility by proving the unsatisfiability of the generated routing constraint Boolean function. 
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Figure 1.  An FPGA routing example 

 

Consider the small FPGA routing problem shown in Figure 1. As depicted in Figure 1, an island-

style FPGA consists of a two-dimensional array of Configurable Logic Blocks (CLB), 
Connection Blocks (C-blk), and Switching Blocks (S-blk). In this figure, there are five nets 

named a through e to be routed over an FPGA fabric that has two tracks numbered 0 and 1 in 

each routing channel. For instance, a net c is modeled by two binary variables c0 and c1 that 
indicate its track assignment: ci = 1 expresses that net C is assigned to track i. With this way of 

encoding, the routing requirements are now formulated as a set of CNF clauses that fall into one 

of two categories: Liveness constraints are to ensure that each net is assigned to at least one 

routing track; Exclusivity constraints are to guarantee that each track is assigned to at most one 
net. 

 

The resulting set of constraints is listed in Table 1 along with four minimal unsatisfiable 
subformulas. There are five liveness constraints, one per net, and twelve exclusivity constraints, 

six for routing channel 1 and six for routing channel 2. The minimal unsatisfiable subformula 1 

and minimal unsatisfiable subformula 2 respectively correspond to routing channels 1 and 2. As a 

means of diagnosing the causes of unroutability, the minimal unsatisfiable subformula 1 
pinpoints the conflicting requirements of trying to route three nets a, b and c in a 2-track channel. 

Similarly, the minimal unsatisfiable subformula 2 indicates the impossibility of three routing nets 

c, d and e in channel 2. Beyond pointing out a routing channel whose capacity is exceeded, these 
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minimal unsatisfiable subformulas are able to find a crucial net, namely c, which contributes to 
the unroutability of both channels. This can be located by noting that the c variables occur more 

frequently in these unsatisfiable subformulas than all other variables. This simple example shows 

that the unsatisfiable subformulas might play a very important role in diagnosing and eliminating 

the causes of failure. 
 

Table 1.  The constraints and minimal unsatisfiable subformulas 

 
Constraints and MUSes Expressions in CNF 

Liveness constraints L0=(a0  a1),     L1=(b0  b1),     L2= (c0  c1),  

L3=(d0  d1),     L4=(e0  e1) 

 

Exclusivity 

constraints 

Channel 1 E0=(a0b0), E1=(a0c0), E2=(b0c0),  

E3=(a1c1), E4=(a1c1), E5=(b1c1) 

Channel 2 E6=(c0d0), E7=(c0e0), E8=(d0e0),  

E9=(c1d1), E10=(c1e1), E11=(d1e1) 

Minimal unsatisfiable subformula 1 L0  L1  L2  E0  E1  E2  E3  E4  E5 

Minimal unsatisfiable subformula 2 L2  L3  L4  E6  E7  E8  E9  E10  E11 

Minimal unsatisfiable subformula 3 L0  L1  L2  L3  L4  E0  E4  E5  E6  E7  E11 

Minimal unsatisfiable subformula 4 L0  L1  L2  L3  L4  E1  E2  E3  E8  E9  E10 

 

4. ALGORITHMS OF EXTRACTING UNSATISFIABLE SUBFORMULA 
 

There have been many different contributions to research on unsatisfiable subformulas extraction 

in the last few years, owing to the increasing importance in numerous practical applications. 

Some research works, based on a relationship between maximal satisfiability and minimal 
unsatisfiability, have developed some sound techniques for finding  a minimum unsatisfiable 

subformula [4], or all minimal unsatisfiable subformulas [5]. 

 
CoreTimmer [6] iterates over each internal node that consumes a large number of clauses and 

attempts to prove them without these clauses. In [7], the authors presented the algorithms which 

tracks minimal unsatisfiable subformulas according to the trace of a failed local search run for 
consistency checking. Two new resolution-based algorithms are proposed in [8]. These 

algorithms are used to compute a minimal unsatisfiable subformula or, if time-out encountered, a 

small non-minimal unsatisfiable subformula. Based on these algorithms, seven improvements are 

proposed in [9], and the experiments have shown the reduction of 55% in run time and 73% in 
the size of the resulting subformula. 

 

In [10], the authors also proposed two algorithms, one is to optimize the number of calls to a SAT 
solver, the other is to employ a new technique named recursive model rotation. An improvement 

to model rotation called eager rotation [11] is integrated in resolution-based minimal unsatisfiable 

subformulas algorithm. Belov et al. [12] have proposed some techniques to trim CNF formulas 

using clausal proofs. A new algorithm [13] is to exploit the minimal unsatisfiable subformulas 
(mus) and minimal correction sets connection in order to compute a single mus and to 

incrementally compute all muses. An algorithm [14] is proposed to improve over previous 

methods for finding multiple muses by computing its muses incrementally. The authors [15] 
aimed to explore the parallelization of partial MUS enumeration. The evaluation results show that 

the full parallelization of the entire enumeration algorithm scales well. 

 
A technique [16] implements a model rotation paradigm that allows the set of minimal correction 

subsets to be computed in a heuristically efficient way. The authors [17] proposed a new 

algorithm for extracting minimal unsatisfiable subformulas and correction sets simultaneously. 

Liu et al. [18] introduced an algorithm for extracting all MUSes for formulas in the field of 
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propositional logic and the function-free and equality-free fragment of first-order logic. Luo et al. 
[19] proposed a method for accelerating the enumeration of MUSes based on inconsistency graph 

partitioning. A novel algorithm [20] is presented for computing the union of the clauses included 

in some MUSes, by developing a refined recursive enumeration of MUSes based on powerful 

pruning techniques. 
 

Bendik et al. [21] firstly approximated MUS counting procedure called AMUSIC, combining the 

technique of universal hashing with advances in QBF solvers along with a novel usage of union 
and intersection of MUSes to achieve runtime efficiency. They proposed a novel maximal 

satisfiable subsets enumeration algorithm called RIME [22]. The experimental results showed 

that RIME is several times faster than existing tools. In [23], they focused on the enumeration of 
MUSes, and introduced a domain agnostic tool called MUST. This tool outperforms other 

existing domain agnostic tools and is even competitive to fully domain specific solutions. 

 

In recent years, the complete methods have made great progress in solving many real life 
problems including Boolean satisfiability, but they usually cannot scale well owing to the 

extreme size of the search space. One way to solve the combinatorial explosion problem is to 

sacrifice completeness, thus some of the best known methods using this incomplete strategy are 
local search algorithms. In general, the local search strategy starts from an initial solution, which 

may be randomly or heuristically generated. Then the search moves to a better neighbor 

according to the objective function, and terminates if the goal is achieved or no better solution 
can be found. Local search methods are underlying some of the best-performing algorithms for 

certain types of problem instances, both from an empirical as well as from a theoretical point of 

view. Consequently, this stochastic strategy is adopted to tackle the problem of finding 

unsatisfiable subformulas, and in general it has better performance than DPLL-based complete 
algorithms, especially on 2-SAT and 3-SAT problem instances. According to the rules described 

in Section 3, the FPGA detailed routing problem can be translated to the Boolean formulas with a 

number of 2-literal and 3-literal clauses. Therefore, we integrated a resolution-based local search 
algorithm [3] into the Boolean-based FPGA detailed routing method. The local search algorithm 

to extract the unsatisfiable subformulas from the Boolean formulas is based on the Lemma 1 and 

Lemma 2 introduced in Section 2. 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 
 

To experimentally evaluate the efficiency between two algorithms of computing unsatisfiable 

subformulas on FPGA routing, we have selected a suit of typical paradigm of the Boolean-based 
FPGA routing problem. As described above, the FPGA routing benchmark suite is derived from 

the problem of Boolean-based FPGA detailed routing formulation on island-style FPGA 

architecture, which is one of the typical applications for unsatisfiable subformulas. The Boolean-

based router expresses the routing constraints as a CNF formula which is unsatisfiable if and only 
if the layout is unroutable. The benchmark includes 10 instances. We have compared the 

resolution-based local search algorithm with the branch-and-bound algorithm, which is the fastest 

tool to compute an exactly minimum unsatisfiable subformula. The experiments were conducted 
on a 2.5 GHz Athlon*2 machine having 2 GB memory and running the Linux operating system. 

The limit time was 1800 seconds. 

 
The experimental results of the branch-and-bound algorithm and the resolution-based local search 

algorithm on the 10 formulas of FPGA routing problem are listed in Table 2. Table 2 shows the 

number of variables (vars) and the number of clauses (clas) for each Boolean formula. The fourth 

column gives the total number of minimal unsatisfiable subformulas contained in every formula 
(MUSes). For generating all minimal unsatisfiable subsets we use the CAMUS algorithm [5]. 

However there are five instances which run out of time, and we mark them with time out in the 
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table. Table 2 also provides the runtime in seconds (BaBA time) of branch-and-bound algorithm, 
and the number of clauses (BaBA size) in the derived minimum unsatisfiable subformula. The 

next three columns present the runtime of the resolution-based local search algorithm in seconds 

(RbLSA time), and the memory consumption in MB (RbLSA mem), and the size of the 

unsatisfiable subformula (RbLSA size). The last column shows the percentage of clauses in the 
unsatisfiable subformula occupying the original formula (Per %). 

 
Table 2.  Experimental results on FPGA routing benchmark 

 
Benchmarks vars clas MUSes 

No. 

BaBA RbLSA Per 
(%) time size time mem size 

fpga_routing1 10 17 4 <0.001 9 <0.001 0.12 9 52.9 

fpga_routing2 14 25 11 0.02 9 <0.001 0.29 9 36.0 

fpga_routing3 18 33 26 0.18 9 0.08 0.63 9 27.3 

fpga_routing4 22 41 57 2.63 9 1.2 1.15 9 21.9 

fpga_routing5 26 49 120 62.7 9 27.6 3.25 9 18.4 

fpga_routing6 30 57 time out time out 182.5 10.6 9 15.8 

fpga_routing7 34 65 time out time out 358.0 17.5 9 13.8 

fpga_routing8 38 73 time out time out 617.0 23.4 9 12.3 

fpga_routing9 42 81 time out time out 1040.1 28.0 9 11.1 

fpga_routing10 46 89 time out time out 1690.0 36.5 9 10.1 

 

From Table 2, we may observe the following. The resolution-based local search algorithm 
outperform the branch-and-bound algorithm for all of 10 formulas. For the instances of 

fpga_routing6 through fpga_routing10, the branch-and-bound algorithm failed to extract the 

unsatisfiable subformula within the timeout, but the resolution-based local search algorithm 
succeeded in obtaining it. Moreover, the local search algorithms find the minimum unsatisfiable 

subformula for each formula of the FPGA routing benchmark suite. 

 

Therefore, the following conclusion can be reached that the runtime of resolution-based local 
search algorithm strongly exceeds the branch-and-bound algorithm, although the local search 

algorithm cannot guarantee obtaining the exact minimum unsatisfiable subformulas. The causes 

include three aspects: The first is that the function of deriving unsatisfiable subformula is coupled 
tightly with the satisfiability checking procedure of the formula. While the resolution is 

proceeding, the refutation is recorded, and the parsing tree is constructed simultaneously, then the 

unsatisfiable subformula is computed very efficiently. The second reason is that the decision of 

satisfiability is implemented simply and performs many more moves per second. The third cause 
is there are many powerful heuristics in the local search algorithm, especially for unit clauses and 

binary clauses. The formulas translated by the Boolean-based FPGA routing problem contain 

many 2-literal clauses. 
 

From the last column of Table 2, we may observe the following. For 10 formulas, the percentage 

of clauses in the unsatisfiable subformulas is quite small, in most cases from 10% to 30%. In 
general, the unsatisfiable subformulas can provide more succinct explanations of infeasibility, 

and is very valuable for a variety of practical applications. In the automatic routing tool of FPGA 

chips, the unsatisfiable subformulas can help the tool to quickly diagnose the root causes of 

unroutability problem, and eliminate the fail nets, and then finish the FPGA routing process much 
more efficiently. 
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6. CONCLUSIONS 
 
An unsatisfiable subformula generally provides the most accurate explanation of infeasibility and 

is valuable for FPGA routing application. The automatic routing process of FPGA devices is very 

difficult and time-consuming. Therefore, two algorithms of deriving unsatisfiable subformulas, 

respectively called the resolution-based local search algorithm and the branch-and-bound 
algorithm, are employed to accelerate the FPGA routing tool. The standard FPGA routing 

problem instances are adopted as the benchmark. The results show that the resolution-based local 

search algorithm outperforms the branch-and-bound algorithm on runtime. We have also 
analyzed that the unsatisfiable subformulas play a very important role in automatic routing tool of 

FPGA chips. 
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