

D.C. Wyld, et al. (Eds): CCSEA 2011, CS & IT 02, pp. 47–56, 2011.

© CS & IT-CSCP 2011 DOI: 10.5121/csit.2011.1206

DYNAMIC VOLTAGE SCALING FOR POWER

CONSUMPTION REDUCTION IN REAL-TIME MIXED

TASK MODEL

Arya Lekshmi Mohan
1
 and Anju.S.Pillai

2

1
Department of Electrical and Electronics Engineering, Amrita University, Coimbatore

India
aryalekshmim@yahoo.co.in

2
Department of Electrical and Electronics Engineering, Amrita University, Coimbatore

India
s_anju@cb.amrita.edu

ABSTRACT

The reduction in energy consumption without any deadline miss is one of the main challenges in

real-time embedded systems. Dynamic voltage scaling (DVS) is a technique that reduces the

power consumption of processors by utilizing various operating points provided to the DVS

processor. These operating points consist of pairs of voltage and frequency. The selection of

operating points can be done based on the load to the system at a particular point of time. In

this work DVS is applied to both periodic and sporadic tasks, and an average of 40% of energy

is reduced. The energy consumption of the processor is further reduced by 2-10% by reducing

the number of pre-emption and frequency switching.

KEYWORDS

Dynamic Voltage Scaling, Pre-Emption, Frequency Switching, Earliest Deadline First

1. INTRODUCTION

The controlling action in a real-time embedded system is done by microprocessors. In a battery

powered system the major part of power is consumed by the microcontroller. The most

commonly using microprocessors are CMOS processors. The main characteristic of a CMOS

processor is that its static power dissipation is very low. The dynamic power taken by a CMOS

processor is given by

P=ceffv
2
f (1)

Where P is the power consumed by the processor, ceff is the load capacitance, v is the operating

voltage and f is the operating frequency. The power consumption of CMOS processor can be

reduced either by reducing the voltage or by reducing the frequency.

There are different techniques evolved to reduce the power consumption of processors. DVS

processor design is one among them. DVS processors mainly focusing on power management. In

recent years, many DVS enabled processors came across, such as the Intel XScale, Transmeta

48 Computer Science & Information Technology (CS & IT)

Crusoe etc. They have discrete number of voltages and its corresponding frequency levels to

switch in between. As the number of voltage levels increased the power consumption of the

system will get decreased, in fact the tasks will get more choices to select frequency and voltage.

The problem with increase in number of voltage and frequency level is that there is a chance of

increased frequency switching.

A real-time task can be defined as a set of instructions that executes to perform a function such as

I/O, peripherals etc. The characteristics of a periodic task are release time, deadline and its

execution time, whereas the release time and deadline of a sporadic task is undefined. Release

time is the time at which a task is ready for running. Execution time is the maximum time

required for a task to complete. Deadline is the time before that particular task should complete its

work. In a realistic scenario the real-time systems have to handle a number of periodic and

sporadic tasks without crossing its deadlines. In this work we consider the system with both

sporadic and periodic tasks. For simulation, the release time of sporadic task is generated

randomly.

Dynamic voltage scaling technique has more to do with real time scenarios like wireless sensor

networks which are battery powered. In such systems the sensor node has to monitor the

environmental changes and send the information to a controlling station. In industries the sensor

node continuously monitors the environmental parameters such as temperature, pressure etc, and

sends them periodically to a controlling station; such an application can be named as a periodic

task. In a sudden if fire occurs in that industry then it has to send that information with prior

importance. Such a task can be defined as a sporadic one. A DVS processor can handle all these

tasks with minimum power consumption.

When applying Dynamic voltage scaling in real time tasks, if the frequency of a processor

decreases, its corresponding voltage also reduces and the task will take more time to complete the

execution. Thus the power consumption reduces, with the assumption that the tasks will not miss

any of its instances when it executes with maximum frequency.

The next phase of this paper delivers the contributions of other researchers in the field. Third

phase explains the computational model. Fourth section describes in dynamic voltage scaling

algorithm given by Pillai et.al.which has been implemented with modifications. Fifth phase deals

with handling of sporadic tasks along with periodic tasks. Sixth phase conveys the simulation

results.

2. RELATED WORKS

Over the last years, DVS has been adopted as one of the most effective technique for reducing

energy consumption in embedded systems. An introduction to DPM and DVS is given in paper

[1]. In that paper the authors discussed the trading-off between energy consumption and

performance [1]. The paper by Johan Pouwelse et al. describes the importance of DVS in

wearable computers. An implementation was done in Embedded Strong ARM 1100 processor

which supports frequency scaling. The result of their experiment is given as energy per

instruction at minimal speed is 1/5 of energy required at full speed [2].

One of the disadvantages of Dynamic Voltage scaling is increasing the number of preemptions.

To reduce that overhead Preemption-Aware DVS for hard Real-Time Systems is implemented.

Two preemption control Methods are proposed in this paper they are accelerated-completion

based technique and delayed preemption based technique. In that work the preemption is reduced

by postponing the high priority tasks and forces low priority tasks to complete the execution [3].

Integration of preemption threshold scheduling and dynamic voltage scaling is given by Jejurikar

et al. They present an algorithm to compute threshold preemption levels for tasks with given

Computer Science & Information Technology (CS & IT) 49

static slowdown factors. The proposed algorithm improves upon known algorithms in terms of

time complexity. Experimental results show that preemption threshold scheduling reduces on an

average 90% context switches, even in the presence of task slowdown. The system model for the

experiment consists of periodic tasks only. [4]

Transition time is another overhead in the case of DVS processors. Transition time is the time

taken by a task to switch from one frequency to another. There are two methods for transition

elimination is given in the paper [5], they are offline and online. Another effort for reducing the

frequency switching is done by Muhammad et al. [6] Frequency switching not only increase the

power consumption but it wastes the processor cycles. By this algorithm an average of 30% of the

frequency switching is reduced. The dynamic voltage scaling algorithm implementation and

testing is done by Pillai et al. in [7]. In this paper the authors proposed three algorithms for

voltage scaling and the proposed algorithms are implemented in 2.2.16 Linux kernel with

hardware platform as AMD K6-2+ processor. [7].

An efficient work for task set generation is done by Bini et al. The main algorithms proposed in

this work are Uunifast, Ufitting, Uscaling, Uunisort. Among these algorithms Uunifast is widely

accepted one. These algorithms provide utilizations for each task in the task set and, from these

utilizations a set of execution times and deadlines are generated. [8]

Sporadic task handling is another feature for Dynamic voltage scaling systems. A DVS algorithm,

called DVSST, is introduced by Ala′ Qadi et al. In that algorithm they handled sporadic tasks in

conjunction with the pre-emptive EDF scheduling algorithm [9]. An acceptance test for sporadic

task instances is given in paper [10]. There are two steps in acceptance test. First step is

processing and second step is slack updating. In this algorithm the acceptance of a sporadic

instance is based on slacks available in the system. Generally the parameters of sporadic tasks are

undefined. In paper [11], the authors provided one algorithm called Total Bandwidth Server

algorithm for calculating the virtual deadline for the aperiodic tasks.

3. SYSTEM MODEL

3.1. Task Model

The task set consists of both periodic and sporadic tasks. Let R (ri, ci, di) represents a periodic task

with release time ri, worst case computation time as ci and relative deadline as di. The sporadic

task can be represented by Si (Ai, Ci, Di), where Ai is the arrival time of the task, Ci is worst case

execution time and Di is the deadline. Arrival time of the sporadic task is generated randomly for

simulation.

3.2. Task set Generation

Task set is generated using an algorithm called UUnifast [8]. A task set with required number of

tasks can be generated for a given utilization. The generated task set is scheduled under EDF

scheduler and hence the maximum utilization is taken as 1.

3.3. Task scheduling Algorithm

The task scheduling policy is Earliest Deadline First; which is a dynamic scheduling algorithm.

The necessary and sufficient condition for scheduling a task set under EDF is that the utilization

should be less than or equal to 1.

U=∑i=1:nCi/Di, (2)

50 Computer Science & Information Technology (CS & IT)

In given equation 2, ‘U’ denotes the utilization, Ci denotes the computation time of i
th
 task, and Di

represents the deadline of i
th
 task. The assumptions are taken for EDF is that period of the task is

equal to its relative deadline and all tasks are independent.

3.4. Processor Model

The processor selected for this work is a DVS enabled processor with a set of operating points.

Operating points are a set of frequency- voltage pairs. Let subscript… f1, f2, f3…fn be the

frequencies and v1, v2, v3….vn be the corresponding voltages. Based on the load at a particular

point of time, one of these operating points can be selected provided any of the tasks will never

miss its deadline when it is executed with its worst case execution time.

4. DYNAMIC VOLTAGE SCALING

Dynamic voltage scaling algorithm used in this work is a modification of look-ahead RT

Dynamic voltage scaling algorithm proposed by Pillai et al [7]. Look-ahead algorithm calculates

the number of cycles that must run within an interval and from that information the frequency

required to run the task is calculated. This algorithm tries to run the high priority task with low

frequency and low priority task with high frequency; in order to meet the deadline in time. This

algorithm activates only at scheduling points. The algorithm utilizes the slacks to reduce the

frequency. The actual execution time is assumed to be less than the worst case execution time. If

a task runs with execution time less than the worst case execution time; then the tasks can run

with a frequency less than the maximum frequency. In this paper the algorithm concerned only

with periodic tasks. In this algorithm the pre-emption and frequency switching are considered to

be negligible. This algorithm is applied only on periodic tasks.

At an instant if a low priority task is getting pre-empted by a high priority task then the new

algorithm will check if sum of remaining computation time of previous task (pre-empted task)

and the computation time of current task is less than or equal to difference in deadline of current

task and current time, then the present pre-emption can be avoided. In most of the cases pre-

emption causes frequency switching. If frequency of current task is different from the frequency

of previous task then the algorithm will checks whether any task in the ready queue with

frequency same as the previous task frequency. If such a task is there then the algorithm checks

whether to execute that task for current instance. If it is possible then that task will take for

execution otherwise not.

The algorithm can be briefly described by the code given below:

if previous_task ≠current_task

for i=1: no_of_task

if frequency(i)= frequency(previous)

if computation(current_task)+ computation(i) + t <deadline(current_task)

current_task=i

break;

else

current_task=current_task

end

end

if computation(previous_task ≠ 0)

if computation_current_task+computation_previous_task < = deadline_current_task – current_tick

current_task= previous_task

end

end

end

 Figure.1. Pseudo code for frequency switching

Computer Science & Information Technology (CS & IT) 51

4.1 Example task set for modified algorithm

Table 1. Task set for modified algorithm

TASK NO EXECUTION TIME DEADLINE

1 1 4

2 1 5

3 2 10

4 4 12

In the given example of the task set, first instance of Task1 and Task2 run with normalized

frequency .5, and Task 3 runs with frequency of .75. At time t=4.2 ms the task T1 is ready for

running with a frequency of .5 and there is another task Task4 having same frequency as the

previous task that had already run (T3) , so the algorithm checks whether the Task4 can run

without missing the deadline of Task1. The algorithm selects Task 4 and it executes till time,

t=6.4ms. The same algorithm also checks for pre-emption. At t=12 Task 3 is pre-empted by Task

1 according to DVS algorithm. New algorithm verifies whether that pre-emption can be avoided,

by reducing the pre-emption by continuing the execution of Task3.

 Figure 2. Example for frequency switching Reduction

5. SPORADIC TASK HANDLING

In a mixed task model the periodic task is handled along with the sporadic tasks. Sporadic tasks

are tasks which occurs at random intervals. Sporadic tasks does not have predefined release time

or deadline. A sporadic task can be represented by three parameters.

 T
i
= (e

i
, g

i
, d

i
), (3)

Where e
i
 is the worst case execution time of the task, g

i
 denotes the minimum separation between

two consecutive instances of task, d
i
 is the relative deadline. The minimum separation (g

i
)

52 Computer Science & Information Technology (CS & IT)

between two successive instances of the task implies that once an instance of a sporadic task

occurs, the next instance cannot occur before g
i
 time units elapsed.

If an instance of a sporadic task is getting the high priority by the earliest deadline first policy, the

algorithm will conduct an acceptance test based on the execution time, available slacks and

deadline of sporadic job, and decide whether to accept or reject the job. Accepting a task implies

that the task will place in a ready queue and will take for execution according to priority and will

complete without affecting any deadline of periodic task. Acceptance of sporadic task directly

relates to the amount of slack remaining for that interval. In this work more priority is given to

periodic tasks.

The deadline for sporadic task is obtained by using TBS (Total Bandwidth Server) algorithm.

This is based on the assigned bandwidth, and offer excellent performance with retaining the

optimality of dynamic-priority scheduling [11]. When a sporadic task occurs, the server assigns

the possible deadline to sporadic task, which is a virtual one. Once the sporadic task is assigned

the virtual deadline, it is scheduled with other periodic tasks according to the EDF algorithm. The

virtual deadline of sporadic task is determined based on the remaining utilization of server.

Suppose that a system has a bandwidth Usrv, assuming that the kth sporadic task Sk arrives on

the system at ak , with an execution time Ck, then its virtual deadline Vk is calculated by the

equation given below, where v0=0 by definition [11].

The virtual deadline Vk is given as

Vk=max{ak,vk-1}+(Ck/Usrv), (4)

5.1. Sporadic Acceptance Test

Consider a system having n number of periodic tasks and m number of sporadic tasks. Sporadic

task is represented by Si (Ai, Ci, Di) and periodic task is represented by R (ri, ci, di). Whenever a

sporadic request occurs then the acceptance test for sporadic task is done. Acceptance test have

two main steps. One is pre-processing step and other is slack updating step [10].

During pre-processing step the system computes the available slacks to incorporate the sporadic

request [10]. Before the system begins execution, the scheduler computes the slack δi, for each

periodic request Ri(ri,ci,di), which is the maximum amount of time available before di to execute

the sporadic request before causing Ri to miss its deadline. Let Hi denotes all the periodic requests

whose deadline is before di.

 δi=di–ci- cj (5)

Where cj is the computation time of all the periodic tasks Ri whose deadline is before di.

Acceptance test relies on information on slack of each request in the system. It has two steps [10].

1. When a sporadic request Si arrives, first determine the amount of slack available in the system

before Di. If the amount of slack is less than the computation time of current sporadic request Si

is rejected, since there is not enough time to schedule Si before its deadline.

2. If there is enough slack, then check if accepting Si would cause any request in the system

whose deadline is after Di to miss its deadline. Si is accepted if no other deadline is missed or

rejected otherwise.

Let ∆k be the slack, then if ∆k>1 then the sporadic request at that instant can be accepted;

otherwise rejected.

∆k=δp+ (Dk-dp)-I-Ck-SP- (6)

Computer Science & Information Technology (CS & IT) 53

Where δp – initial slack of periodic request Rp whose deadline is closer to the deadline of

sporadic request Dk, and whose deadline is earlier than Dk.

Dk - deadline of currently requested sporadic task.

Dp- Deadline of periodic request Rp whose deadline is closer to the deadline of sporadic request

Dk, and whose deadline is earlier than Dk.

I - The amount of idle time before the current sporadic request.

Ck is the worst case execution time of currently requested sporadic request.

fi – the sporadic task requests at ‘tc ’, then the current requests of each periodic task can have

deadline later than dp and yet start executing before ‘tc’ but not yet completed.

SP is the amount of time that is consumed by the sporadic requests which are completed.

∑Di<Dk (Ci) This amount of time is reserved for sporadic requests which have not been completed

and have deadlines before Dk.

∑Dk<di (Fi) This amount of time has been consumed by sporadic requests that have not completed

and have deadlines after Dk.

5.2. Example for calculation of virtual deadline

Consider two periodic tasks and one sporadic task given in table. Task 1 and Task 2 are periodic

tasks and Task 3 is a sporadic task. Task 3.1 is the first instance of sporadic request and task 3.2 is

the second instance of sporadic request. The minimum inter arrival time for sporadic task instance

1 is randomly taken as 8, and for second instance as 7.Here in this example the arrival time for

first instance is obtained randomly as 3,and the virtual deadline is 8 from the below example. So

finally deadline for first instance of the sporadic task is taken as 3+8=11.

The virtual deadline for sporadic task is computed as:

Vd1=max{0,3+(execution_sporadic/(1-utilization_of_periodic))} (7)

The arrival time for next instance is randomly taken as 13. Then the virtual deadline for next

instance is obtained as

Vd2=max{11,13+(execution_sporadic/(1-utilization_of_periodictasks))} (8)

5.3 Example for Sporadic Task Handling

Table2. Periodic and sporadic task parameters

Task number Arrival time Execution

time

Relative

deadline

Task 1 0 2 4

Task 2 0 2 8

Task 3 8 2 13

Task 4 3 1 17

In the table given above the tasks 1 and task2 are periodic tasks and tasks 4 and 5 are sporadic

tasks. The arrival time of sporadic tasks are 8 and 3 milli seconds respectively. The minimum

inter arrival time for task 3 and 4 are 7 and 8 respectively. Although these parameters are

undefined, in simulation these parameters are generated randomly. Figure 3 shows the trace for

the task scheduled under EDF, and all tasks scheduled without missing the deadline and power

calculated is 215 mW. In figure 4, the scheduled task after applying DVS is given. In that figure

most of the slacks are utilized and the power measured is 125.65 mW. In figure 5, the output trace

for modified algorithm is given and power consumption reduced to 120 mW. In that trace

preemptions are avoided. At t=12 a frequency switching occurred after applying DVS, but in

modified algorithm the frequency switching due to the pre-emption of task 3 is avoided.

54 Computer Science & Information Technology (CS & IT)

Figure 3 Output Trace For Task Set Scheduled Under EDF

Figure 4 Output Trace For Task Set Scheduled Under DVS

Figure 5 Output Trace For Task Set Scheduled Under Modified Algorithm

6. SIMULATION RESULTS

The simulation is done with 5 different task sets with both periodic and sporadic tasks, and the

average power saving calculated from the simulation result is 40%.

Computer Science & Information Technology (CS & IT) 55

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Task set number

With DVS

Without DVS

Figure 6. Normalized energy plot for mixed task model

Task pre-emption requires about .2 milli joules energy for context switching [4]. In figure 6

Normalized energy Vs utilization graph is plotted. From this figure it is clear that power

consumption is further reduced with the modified algorithm. About 2-10% of power is reduced in

the modified work as compared to the previous algorithm. The simulation is done for periodic

tasks only. Figure 7 shows normalized energy after reducing the pre-emption.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

E
n
e
rg

y
(N

o
rm

a
liz

e
d
)

Without DVS

With DVS

With DVS+Reduced Preemption

Figure 7. Plot for Normalized Energy Vs utilization

7. CONCLUSIONS

The dynamic voltage scaling technique is applied to the processors to alleviate the excessive

power consumption. In real time systems in addition to periodic tasks sporadic task may occur.

The handling of sporadic task without any deadline miss has prime importance. A modified

algorithm for dynamic voltage scaling is discussed above for the mixed task set. An average of

40% of power consumption is reduced in mixed task model by reducing the pre-emption and

56 Computer Science & Information Technology (CS & IT)

frequency switching. Frequency switching in the system is reduced by 35% by applying the new

algorithm. Frequency switching due to pre-emption is avoided in improved algorithm.

ACKNOWLEDGEMENTS

We would like to thank God Almighty for giving us this opportunity to complete this work. We

would like to extend our gratefulness to Dr. T.N Padmanabhan Nambiar for providing the

valuable support and help in this work.

REFERENCES

 [1] Niraj K. Jha,” Low Power System Scheduling and Synthesis”, IEEE/ACM International Conference

on Computer Aided Design, 2001.

 [2] Johan Pouwelse, Koen Langendoen and Henk Sips “Dynamic Voltage Scaling on a Low-Power

Microprocessor”, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Oct. 2003,

Volume 11 Issue:5, page(s): 812 – 826,2003.

 [3] Woonseok Kim, Jihong Kim, Sang Lyul Min,” Preemption-Aware Dynamic Voltage Scaling in Hard

Real-Time Systems”, Proceedings of the International Symposium on Low Power Electronics and

Design (ISLPED’04), 2004.

 [4] Ravindra Jejurikar and Rajesh Gupta, “Integrating Preemption Threshold Scheduling and Dynamic

Voltage Scaling for Energy Efficient Real-Time Systems”, Proceedings of the Ninth International

Conference on Real-Time Computing Systems and Applications, 2004.

 [5] Bren Mochocki, Xiaobo Sharon Hu, Gang Quan, “Transition-Overhead-Aware Voltage Scheduling

for Fixed-Priority Real-Time Systems”, ACM Transactions on Design Automation of Electronic

Systems, Vol. 12,No. 2, Article 11, April 2007.

 [6] Farooq Muhammad, Bhatti M. Khurram, Fabrice Muller, Cecile Belleudy, Michel Auguin,

“Precognitive DVFS: Minimizing Switching Points to Further Reduce the Energy Consumption”,

Proceedings of the 14th Real-Time and Embedded Technology and Applications Symposium, 2008.

 [7] Padmanabhan Pillai and Kang G. Shin,“Real-Time Dynamic Voltage Scaling for Low Power

Embedded Operating Systems”, Symposium on Operating Systems Principles’01, 2001.

 [8] Enricobini, Giorgioc Buttazzo, “Biasing Effects in Schedulability Measures”, Proceedings of the 12th

16th Euromicro Conference on Real-Time Systems (ECRTS’04), IEEE, 2004.

 [9] Ala′ Qadi, Steve Goddard, Shane Farritor, “A Dynamic Voltage Scaling Algorithm for Sporadic

Tasks”, 24th IEEE International Real-Time Systems Symposium (RTSS'03) 2003.

[10] Too-seng Tia, Jane W.S.Liu, Jun Sun, Rhan Ha, “A linear-time optimal acceptance test for

scheduling of hard real-time tasks”, IEEE Transactions on Software engineering, November15,

1994.

[11] Shinpei Kato and Nobuyuki Yamasaki, “Scheduling Aperiodic Tasks Using Total Bandwidth Server

on Multiprocessors”, Proceedings of the 2008 IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing - Volume 01, 2008.

