keyboard_arrow_up
Hamming Distance and Data Compression of 1-D CA

Authors

Raied Salman, Stratford University, USA

Abstract

In this paper an application of von Neumann correction technique to the output string of some chaotic rules of 1-D Cellular Automata that are unsuitable for cryptographic pseudo random number generation due to their non uniform distribution of the binary elements is presented. The one dimensional (1-D) Cellular Automata (CA) Rule space will be classified by the time run of Hamming Distance (HD). This has the advantage of determining the rules that have short cycle lengths and therefore deemed to be unsuitable for cryptographic pseudo random number generation. The data collected from evolution of chaotic rules that have long cycles are subjected to the original von Neumann density correction scheme as well as a new generalized scheme presented in this paper and tested for statistical testing fitness using Diehard battery of tests. Results show that significant improvement in the statistical tests are obtained when the output of a balanced chaotic rule are mutually exclusive ORed with the output of unbalanced chaotic rule that have undergone von Neumann density correction.

Keywords

Component; Formatting; Cellular Automata, Hamming Distance, Pseudo Random Number Generator (PRNG)

Full Text  Volume 3, Number 3