Using Holographically Compressed Embeddings in Question Answering


Salvador E. Barbosa, Middle Tennessee State University, USA


Word vector representations are central to deep learning natural language processing models. Many forms of these vectors, known as embeddings, exist, including word2vec and GloVe. Embeddings are trained on large corpora and learn the word’s usage in context, capturing the semantic relationship between words. However, the semantics from such training are at the level of distinct words (known as word types), and can be ambiguous when, for example, a word type can be either a noun or a verb. In question answering, parts-of-speech and named entity types are important, but encoding these attributes in neural models expands the size of the input. This research employs holographic compression of pretrained embeddings, to represent a token, its part-of-speech, and named entity type, in the same dimension as representing only the token. The implementation, in a modified question answering recurrent deep learning network, shows that semantic relationships are preserved, and yields strong performance.


Question Answering, Vector Embeddings, Holographic Reduced Representations, DrQA, SQuAD.

Full Text  Volume 10, Number 9